We propose a method for sparse and robust principal component analysis. The methodology is structured in two steps: first, a robust estimate of the covariance matrix is obtained, then this estimate is plugged-in into an elastic-net regression which enforces sparseness. Our approach provides an intuitive, general and flexible extension of sparse principal component analysis to the robust setting. We also show how to implement the algorithm when the dimensionality exceeds the number of observations by adapting the approach to the use of robust loadings from ROBPCA. The proposed technique is seen to compare well for simulated and real datasets.
A plug-in approach to sparse and robust principal component analysis / Greco, Luca; Farcomeni, Alessio. - In: TEST. - ISSN 1133-0686. - STAMPA. - 25:3(2016), pp. 449-481. [10.1007/s11749-015-0464-0]
A plug-in approach to sparse and robust principal component analysis
FARCOMENI, Alessio
2016
Abstract
We propose a method for sparse and robust principal component analysis. The methodology is structured in two steps: first, a robust estimate of the covariance matrix is obtained, then this estimate is plugged-in into an elastic-net regression which enforces sparseness. Our approach provides an intuitive, general and flexible extension of sparse principal component analysis to the robust setting. We also show how to implement the algorithm when the dimensionality exceeds the number of observations by adapting the approach to the use of robust loadings from ROBPCA. The proposed technique is seen to compare well for simulated and real datasets.File | Dimensione | Formato | |
---|---|---|---|
Greco_plug-in_2015.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF | |
Greco_Plug-in_2016.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.