We prove that the hierarchy of higher antibrackets (aka higher Koszul brackets, aka Koszul braces) of a linear operator Δ on a commutative superalgebra can be defined by some universal formulas involving iterated Nijenhuis-Richardson brackets having as arguments Δ and the multiplication operators. As a byproduct, we can immediately extend higher antibrackets to noncommutative algebras in a way preserving the validity of generalized Jacobi identities.

Universal Lie formulas for higher antibrackets / Manetti, Marco; Ricciardi, Giulia. - In: SYMMETRY, INTEGRABILITY AND GEOMETRY: METHODS AND APPLICATIONS. - ISSN 1815-0659. - ELETTRONICO. - 12:(2016). [10.3842/SIGMA.2016.053]

Universal Lie formulas for higher antibrackets

MANETTI, Marco
;
2016

Abstract

We prove that the hierarchy of higher antibrackets (aka higher Koszul brackets, aka Koszul braces) of a linear operator Δ on a commutative superalgebra can be defined by some universal formulas involving iterated Nijenhuis-Richardson brackets having as arguments Δ and the multiplication operators. As a byproduct, we can immediately extend higher antibrackets to noncommutative algebras in a way preserving the validity of generalized Jacobi identities.
2016
Higher brackets; Lie superalgebras; analysis; geometry and topology; mathematical physics
01 Pubblicazione su rivista::01a Articolo in rivista
Universal Lie formulas for higher antibrackets / Manetti, Marco; Ricciardi, Giulia. - In: SYMMETRY, INTEGRABILITY AND GEOMETRY: METHODS AND APPLICATIONS. - ISSN 1815-0659. - ELETTRONICO. - 12:(2016). [10.3842/SIGMA.2016.053]
File allegati a questo prodotto
File Dimensione Formato  
Manetti_Universal-Lie-formulas_2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 433.31 kB
Formato Adobe PDF
433.31 kB Adobe PDF   Contatta l'autore
Manetti_Universal-Lie-formulas_postprint_2016.pdf

accesso aperto

Note: https://arxiv.org/abs/1509.09032
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 452.82 kB
Formato Adobe PDF
452.82 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/876439
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact