We prove that the hierarchy of higher antibrackets (aka higher Koszul brackets, aka Koszul braces) of a linear operator Δ on a commutative superalgebra can be defined by some universal formulas involving iterated Nijenhuis-Richardson brackets having as arguments Δ and the multiplication operators. As a byproduct, we can immediately extend higher antibrackets to noncommutative algebras in a way preserving the validity of generalized Jacobi identities.
Universal Lie formulas for higher antibrackets / Manetti, Marco; Ricciardi, Giulia. - In: SYMMETRY, INTEGRABILITY AND GEOMETRY: METHODS AND APPLICATIONS. - ISSN 1815-0659. - ELETTRONICO. - 12:(2016). [10.3842/SIGMA.2016.053]
Universal Lie formulas for higher antibrackets
MANETTI, Marco
;
2016
Abstract
We prove that the hierarchy of higher antibrackets (aka higher Koszul brackets, aka Koszul braces) of a linear operator Δ on a commutative superalgebra can be defined by some universal formulas involving iterated Nijenhuis-Richardson brackets having as arguments Δ and the multiplication operators. As a byproduct, we can immediately extend higher antibrackets to noncommutative algebras in a way preserving the validity of generalized Jacobi identities.File | Dimensione | Formato | |
---|---|---|---|
Manetti_Universal-Lie-formulas_2016.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
433.31 kB
Formato
Adobe PDF
|
433.31 kB | Adobe PDF | Contatta l'autore |
Manetti_Universal-Lie-formulas_postprint_2016.pdf
accesso aperto
Note: https://arxiv.org/abs/1509.09032
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
452.82 kB
Formato
Adobe PDF
|
452.82 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.