Supervised classification is one of the most used methods in machine learning. In case of data characterized by a large number of features, a critical issue is to deal with redundant or irrelevant information. To this extent, an effective algorithm needs to identify a suitable subset of features, as small as possible, for the classification. In this work we present ReGEC_L1, a classifier with embedded feature selection based on the Regularized Generalized Eigenvalue Classifier (ReGEC) and equipped with a L1-norm regularization term. We detail the mathematical formulation and the numerical algorithm. Numerical results, obtained on some de facto standard benchmark data sets, show that the approach we propose produces a remarkable selection of the features, without losing accuracy in the classification. In that respect, our algorithm seems to compare favorably with the SVM_L1 method. A MATLAB implementation of ReGEC_L1 is available at http://www.na.icar.cnr.it/~mariog/regec_l1.html.

A generalized eigenvalues classifier with embedded feature selection / Viola, Marco; Sangiovanni, Mara; Toraldo, Gerardo; Guarracino, Mario R.. - In: OPTIMIZATION LETTERS. - ISSN 1862-4472. - 11:2(2017), pp. 299-311. [10.1007/s11590-015-0955-7]

A generalized eigenvalues classifier with embedded feature selection

Viola, Marco
;
TORALDO, GERARDO;
2017

Abstract

Supervised classification is one of the most used methods in machine learning. In case of data characterized by a large number of features, a critical issue is to deal with redundant or irrelevant information. To this extent, an effective algorithm needs to identify a suitable subset of features, as small as possible, for the classification. In this work we present ReGEC_L1, a classifier with embedded feature selection based on the Regularized Generalized Eigenvalue Classifier (ReGEC) and equipped with a L1-norm regularization term. We detail the mathematical formulation and the numerical algorithm. Numerical results, obtained on some de facto standard benchmark data sets, show that the approach we propose produces a remarkable selection of the features, without losing accuracy in the classification. In that respect, our algorithm seems to compare favorably with the SVM_L1 method. A MATLAB implementation of ReGEC_L1 is available at http://www.na.icar.cnr.it/~mariog/regec_l1.html.
2017
Embedded methods; Feature selection; Supervised classification; Control and Optimization
01 Pubblicazione su rivista::01a Articolo in rivista
A generalized eigenvalues classifier with embedded feature selection / Viola, Marco; Sangiovanni, Mara; Toraldo, Gerardo; Guarracino, Mario R.. - In: OPTIMIZATION LETTERS. - ISSN 1862-4472. - 11:2(2017), pp. 299-311. [10.1007/s11590-015-0955-7]
File allegati a questo prodotto
File Dimensione Formato  
Viola_A-generalized-eigenvalues_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 787.97 kB
Formato Adobe PDF
787.97 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/873743
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact