In this paper, a preliminary shadowgraph-based analysis of dust particles re-suspension due to loss of vacuum accident (LOVA) in ITER-like nuclear fusion reactors has been presented. Dust particles are produced through different mechanisms in nuclear fusion devices, one of the main issues is that dust particles are capable of being re-suspended in case of events such as LOVA. Shadowgraph is based on an expanded collimated beam of light emitted by a laser or a lamp that emits light transversely compared to the flow field direction. In the STARDUST facility, the dust moves in the flow, and it causes variations of refractive index that can be detected by using a CCD camera. The STARDUST fast camera setup allows to detect and to track dust particles moving in the vessel and then to obtain information about the velocity field of dust mobilized. In particular, the acquired images are processed such that per each frame the moving dust particles are detected by applying a background subtraction technique based on the mixture of Gaussian algorithm. The obtained foreground masks are eventually filtered with morphological operations. Finally, a multi-object tracking algorithm is used to track the detected particles along the experiment. For each particle, a Kalman filter-based tracker is applied; the particles dynamic is described by taking into account position, velocity, and acceleration as state variable. The results demonstrate that it is possible to obtain dust particles' velocity field during LOVA by automatically processing the data obtained with the shadowgraph approach.

Image computing techniques to extrapolate data for dust tracking in case of an experimental accident simulation in a nuclear fusion plant / Camplani, M.; Malizia, A.; Gelfusa, M.; Barbato, F.; Antonelli, Luca; Poggi, L. A.; Ciparisse, JEAN FRANCOIS; Salgado, L.; Richetta, M.; Gaudio, P.. - In: REVIEW OF SCIENTIFIC INSTRUMENTS. - ISSN 0034-6748. - ELETTRONICO. - 87:1(2016), p. 013504. [10.1063/1.4939458]

Image computing techniques to extrapolate data for dust tracking in case of an experimental accident simulation in a nuclear fusion plant

ANTONELLI, LUCA;CIPARISSE, JEAN FRANCOIS;
2016

Abstract

In this paper, a preliminary shadowgraph-based analysis of dust particles re-suspension due to loss of vacuum accident (LOVA) in ITER-like nuclear fusion reactors has been presented. Dust particles are produced through different mechanisms in nuclear fusion devices, one of the main issues is that dust particles are capable of being re-suspended in case of events such as LOVA. Shadowgraph is based on an expanded collimated beam of light emitted by a laser or a lamp that emits light transversely compared to the flow field direction. In the STARDUST facility, the dust moves in the flow, and it causes variations of refractive index that can be detected by using a CCD camera. The STARDUST fast camera setup allows to detect and to track dust particles moving in the vessel and then to obtain information about the velocity field of dust mobilized. In particular, the acquired images are processed such that per each frame the moving dust particles are detected by applying a background subtraction technique based on the mixture of Gaussian algorithm. The obtained foreground masks are eventually filtered with morphological operations. Finally, a multi-object tracking algorithm is used to track the detected particles along the experiment. For each particle, a Kalman filter-based tracker is applied; the particles dynamic is described by taking into account position, velocity, and acceleration as state variable. The results demonstrate that it is possible to obtain dust particles' velocity field during LOVA by automatically processing the data obtained with the shadowgraph approach.
2016
Instrumentation
01 Pubblicazione su rivista::01a Articolo in rivista
Image computing techniques to extrapolate data for dust tracking in case of an experimental accident simulation in a nuclear fusion plant / Camplani, M.; Malizia, A.; Gelfusa, M.; Barbato, F.; Antonelli, Luca; Poggi, L. A.; Ciparisse, JEAN FRANCOIS; Salgado, L.; Richetta, M.; Gaudio, P.. - In: REVIEW OF SCIENTIFIC INSTRUMENTS. - ISSN 0034-6748. - ELETTRONICO. - 87:1(2016), p. 013504. [10.1063/1.4939458]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/873597
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact