Recent studies have correlated physical activity with a better prognosis in cachectic patients, although the underlying mechanisms are not yet understood. In order to identify the pathways involved in the physical activity-mediated rescue of skeletal muscle mass and function, we investigated the effects of voluntary exercise on cachexia in colon carcinoma (C26)-bearing mice. Voluntary exercise prevented loss of muscle mass and function, ultimately increasing survival of C26-bearing mice. We found that the autophagic flux is overloaded in skeletal muscle of both colon carcinoma murine models and patients, but not in running C26-bearing mice, thus suggesting that exercise may release the autophagic flux and ultimately rescue muscle homeostasis. Treatment of C26-bearing mice with either AICAR or rapamycin, two drugs that trigger the autophagic flux, also rescued muscle mass and prevented atrogene induction. Similar effects were reproduced on myotubes in vitro, which displayed atrophy following exposure to C26-conditioned medium, a phenomenon that was rescued by AICAR or rapamycin treatment and relies on autophagosome-lysosome fusion (inhibited by chloroquine). Since AICAR, rapamycin and exercise equally affect the autophagic system and counteract cachexia, we believe autophagy-triggering drugs may be exploited to treat cachexia in conditions in which exercise cannot be prescribed

Aerobic exercise and pharmacological treatments counteract cachexia by modulating autophagy in colon cancer / Pigna, Eva; Berardi, Emanuele; Aulino, Paola; Rizzuto, Emanuele; Zampieri, Sandra; Carraro, Ugo; Kern, Helmut; Merigliano, Stefano; Gruppo, Mario; Mericskay, Mathias; Li, Zhenlin; Rocchi, Marco; Barone, Rosario; Macaluso, Filippo; Felice, Valentina Di; Adamo, Sergio; Coletti, Dario; Moresi, Viviana. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - STAMPA. - 6:(2016), pp. 1-14. [10.1038/srep26991]

Aerobic exercise and pharmacological treatments counteract cachexia by modulating autophagy in colon cancer

PIGNA, EVA;BERARDI, EMANUELE;AULINO, PAOLA;RIZZUTO, EMANUELE;ADAMO, Sergio;COLETTI, Dario
Ultimo
;
MORESI, Viviana
2016

Abstract

Recent studies have correlated physical activity with a better prognosis in cachectic patients, although the underlying mechanisms are not yet understood. In order to identify the pathways involved in the physical activity-mediated rescue of skeletal muscle mass and function, we investigated the effects of voluntary exercise on cachexia in colon carcinoma (C26)-bearing mice. Voluntary exercise prevented loss of muscle mass and function, ultimately increasing survival of C26-bearing mice. We found that the autophagic flux is overloaded in skeletal muscle of both colon carcinoma murine models and patients, but not in running C26-bearing mice, thus suggesting that exercise may release the autophagic flux and ultimately rescue muscle homeostasis. Treatment of C26-bearing mice with either AICAR or rapamycin, two drugs that trigger the autophagic flux, also rescued muscle mass and prevented atrogene induction. Similar effects were reproduced on myotubes in vitro, which displayed atrophy following exposure to C26-conditioned medium, a phenomenon that was rescued by AICAR or rapamycin treatment and relies on autophagosome-lysosome fusion (inhibited by chloroquine). Since AICAR, rapamycin and exercise equally affect the autophagic system and counteract cachexia, we believe autophagy-triggering drugs may be exploited to treat cachexia in conditions in which exercise cannot be prescribed
2016
muscle wasting; cancer cachexia; voluntary physical activity; exercise mimetics; 5-amino-1-beta-D-ribofuranosyl-imidazole-4-carboxamide (AICAR); rapamycin; autophagic flux
01 Pubblicazione su rivista::01a Articolo in rivista
Aerobic exercise and pharmacological treatments counteract cachexia by modulating autophagy in colon cancer / Pigna, Eva; Berardi, Emanuele; Aulino, Paola; Rizzuto, Emanuele; Zampieri, Sandra; Carraro, Ugo; Kern, Helmut; Merigliano, Stefano; Gruppo, Mario; Mericskay, Mathias; Li, Zhenlin; Rocchi, Marco; Barone, Rosario; Macaluso, Filippo; Felice, Valentina Di; Adamo, Sergio; Coletti, Dario; Moresi, Viviana. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - STAMPA. - 6:(2016), pp. 1-14. [10.1038/srep26991]
File allegati a questo prodotto
File Dimensione Formato  
Pigna_Aerobic_2016.pdf

accesso aperto

Note: Pigna et al., Aerobic exercise_ Sci Rep 2016-26991
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/873158
Citazioni
  • ???jsp.display-item.citation.pmc??? 100
  • Scopus 132
  • ???jsp.display-item.citation.isi??? 121
social impact