We consider σ-harmonic mappings, that is mappings U whose components ui solve a divergence structure elliptic equation div(σ∇ui) = 0, for i = 1; : : : ; n. We investigate whether, with suitably prescribed Dirichlet data, the Jacobian determinant can be bounded away from zero. Results of this sort are required in the treatment of the so-called hybrid inverse problems, and also in the field of homogenization studying bounds for the effective properties of composite materials.

Quantitative estimates on jacobians for hybrid inverse problems / Alessandrini, G.; Nesi, Vincenzo. - In: VESTNIK UZNO-URALʹSKOGO GOSUDARSTVENNOGO UNIVERSITETA. SERIA, MATEMATICESKOE MODELIROVANIE I PROGRAMMIROVANIE. - ISSN 2308-0256. - STAMPA. - 8:3(2015), pp. 25-41. [10.14529/mmp150302]

Quantitative estimates on jacobians for hybrid inverse problems

NESI, Vincenzo
2015

Abstract

We consider σ-harmonic mappings, that is mappings U whose components ui solve a divergence structure elliptic equation div(σ∇ui) = 0, for i = 1; : : : ; n. We investigate whether, with suitably prescribed Dirichlet data, the Jacobian determinant can be bounded away from zero. Results of this sort are required in the treatment of the so-called hybrid inverse problems, and also in the field of homogenization studying bounds for the effective properties of composite materials.
2015
Beltrami operators; composite materials; elliptic equations; hybrid inverse problems; computational theory and mathematics; software; modeling and simulation; computational mathematics
01 Pubblicazione su rivista::01a Articolo in rivista
Quantitative estimates on jacobians for hybrid inverse problems / Alessandrini, G.; Nesi, Vincenzo. - In: VESTNIK UZNO-URALʹSKOGO GOSUDARSTVENNOGO UNIVERSITETA. SERIA, MATEMATICESKOE MODELIROVANIE I PROGRAMMIROVANIE. - ISSN 2308-0256. - STAMPA. - 8:3(2015), pp. 25-41. [10.14529/mmp150302]
File allegati a questo prodotto
File Dimensione Formato  
Alessandrini_Quantitative-estimates_2015.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 545.84 kB
Formato Adobe PDF
545.84 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/873015
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact