We consider σ-harmonic mappings, that is mappings U whose components ui solve a divergence structure elliptic equation div(σ∇ui) = 0, for i = 1; : : : ; n. We investigate whether, with suitably prescribed Dirichlet data, the Jacobian determinant can be bounded away from zero. Results of this sort are required in the treatment of the so-called hybrid inverse problems, and also in the field of homogenization studying bounds for the effective properties of composite materials.
Quantitative estimates on jacobians for hybrid inverse problems / Alessandrini, G.; Nesi, Vincenzo. - In: VESTNIK UZNO-URALʹSKOGO GOSUDARSTVENNOGO UNIVERSITETA. SERIA, MATEMATICESKOE MODELIROVANIE I PROGRAMMIROVANIE. - ISSN 2308-0256. - STAMPA. - 8:3(2015), pp. 25-41. [10.14529/mmp150302]
Quantitative estimates on jacobians for hybrid inverse problems
NESI, Vincenzo
2015
Abstract
We consider σ-harmonic mappings, that is mappings U whose components ui solve a divergence structure elliptic equation div(σ∇ui) = 0, for i = 1; : : : ; n. We investigate whether, with suitably prescribed Dirichlet data, the Jacobian determinant can be bounded away from zero. Results of this sort are required in the treatment of the so-called hybrid inverse problems, and also in the field of homogenization studying bounds for the effective properties of composite materials.File | Dimensione | Formato | |
---|---|---|---|
Alessandrini_Quantitative-estimates_2015.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
545.84 kB
Formato
Adobe PDF
|
545.84 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.