The pituitary corticotrope-derived AtT20 D16V cell line responds to nerve growth factor (NGF) by extending neurite-like processes and differentiating into neurosecretory-like cells. The aim of this work is the study of the effect of extremely low frequency electromagnetic fields (ELF-EMF) at a frequency of 50 Hz on these differentiation activities. To establish whether exposure to the field could influence the molecular biology of the cells, they were exposed to a magnetic flux density of 2 milli-Tesla (mT). Intracellular calcium ([Ca2+]i) and intracellular pH (pHi) were monitored in single exposed AtT20 D16V cells using fluorophores Indo-1 and SNARF for [Ca2+]i and pHi, respectively. Single-cell fluorescence microscopy showed a statistically significant increase in [Ca2+]i followed by a drop in pHi in exposed cells. Both scanning electron microscopy (SEM) and transmission microscopy of exposed AtT20 D16V cells show morphological changes in plasma membrane compared to non-exposed cells; this modification was accompanied by a rearrangement in actin filament distribution and the emergence of properties typical of peptidergic neuronal cells-the appearance of secretory-like granules in the cytosol and the increase of synaptophysin in synaptic vesicles, changes typical of neurosecretory-like cells. Using a monoclonal antibody toward the neurofilament protein NF-200 gave additional evidence that exposed cells were in an early stage of differentiation compared to control. Pre-treatment with 0.3 microM nifedipine, which specifically blocks L-type Ca2+ channels, prevented NF-200 expression in AtT20 D16V exposed cells. The above findings demonstrate that exposure to 50 Hz ELF-EMF is responsible for the premature differentiation in AtT20 D 16 V cells.

Extremely low frequency electromagnetic field exposure promotes differentiation of Pituitary Corticotrope-derived AtT20 cells / Lisi, A; Ledda, M; Rosola, E; Pozzi, Deleana; D'Emilia, E; Giuliani, L; Foletti, A; Modesti, A; Morris, S. AND GRIMALDI S.. - In: BIOELECTROMAGNETICS. - ISSN 0197-8462. - STAMPA. - 27:8(2006), pp. 641-651. [10.1002/bem.20255]

Extremely low frequency electromagnetic field exposure promotes differentiation of Pituitary Corticotrope-derived AtT20 cells

POZZI, Deleana;
2006

Abstract

The pituitary corticotrope-derived AtT20 D16V cell line responds to nerve growth factor (NGF) by extending neurite-like processes and differentiating into neurosecretory-like cells. The aim of this work is the study of the effect of extremely low frequency electromagnetic fields (ELF-EMF) at a frequency of 50 Hz on these differentiation activities. To establish whether exposure to the field could influence the molecular biology of the cells, they were exposed to a magnetic flux density of 2 milli-Tesla (mT). Intracellular calcium ([Ca2+]i) and intracellular pH (pHi) were monitored in single exposed AtT20 D16V cells using fluorophores Indo-1 and SNARF for [Ca2+]i and pHi, respectively. Single-cell fluorescence microscopy showed a statistically significant increase in [Ca2+]i followed by a drop in pHi in exposed cells. Both scanning electron microscopy (SEM) and transmission microscopy of exposed AtT20 D16V cells show morphological changes in plasma membrane compared to non-exposed cells; this modification was accompanied by a rearrangement in actin filament distribution and the emergence of properties typical of peptidergic neuronal cells-the appearance of secretory-like granules in the cytosol and the increase of synaptophysin in synaptic vesicles, changes typical of neurosecretory-like cells. Using a monoclonal antibody toward the neurofilament protein NF-200 gave additional evidence that exposed cells were in an early stage of differentiation compared to control. Pre-treatment with 0.3 microM nifedipine, which specifically blocks L-type Ca2+ channels, prevented NF-200 expression in AtT20 D16V exposed cells. The above findings demonstrate that exposure to 50 Hz ELF-EMF is responsible for the premature differentiation in AtT20 D 16 V cells.
2006
01 Pubblicazione su rivista::01a Articolo in rivista
Extremely low frequency electromagnetic field exposure promotes differentiation of Pituitary Corticotrope-derived AtT20 cells / Lisi, A; Ledda, M; Rosola, E; Pozzi, Deleana; D'Emilia, E; Giuliani, L; Foletti, A; Modesti, A; Morris, S. AND GRIMALDI S.. - In: BIOELECTROMAGNETICS. - ISSN 0197-8462. - STAMPA. - 27:8(2006), pp. 641-651. [10.1002/bem.20255]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/87270
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 51
social impact