Delivery of tumor-associated Ag-derived peptides in a high immunogenic form represents one of the key issues for effective peptide-based cancer vaccine development. We report herein the ability of nonpathogenic filamentous bacteriophage fd virions to deliver HLA-A2-restricted MAGE-A10(254-262)- or MAGE-A3(271-279) derived peptides and to elicit potent specific CTL responses in vitro and in vivo. Interestingly, human anti-MAGE-A3(271-279)-specific CTLs were able to kill human MAGE-A3(+) tumor cells, even if these cells naturally express a low amount of MAGE-A3(271-279) peptide-HLA epitope surface complexes and are usually not recognized by CTLs generated by conventional stimulation procedures. MAGE-A3(171-279)-specific/CD8(+) CTL clones were isolated from in vitro cultures, and their high avidity for Ag recognition was assessed. Moreover, in vivo tumor protection assay showed that vaccination of humanized HHD (HLA-A2.1(+)/H2-D(b+)) transgenic mice with phage particles expressing MAGE-A3(271-279) derived peptides hampered tumor growth. Overall, these data indicate that engineered filamentous bacteriophage virions increase substantially the immunogenicity of delivered tumor-associated Ag-derived peptides, thus representing a novel powerful system for the development of effective peptide-based cancer vaccines.

The use of filamentous bacteriophage fd to deliver MAGE-A10 or MAGE-A3 HLA-A2-restricted peptides and to induce strong antitumor CTL responses / R., Sartorius; P., Pisu; L., D'Apice; L., Pizzella; Romano, Chiara; G., Cortese; A., Giorgini; Santoni, Angela; F., Velotti; P., De Berardinis. - In: JOURNAL OF IMMUNOLOGY. - ISSN 0022-1767. - STAMPA. - 180:6(2008), pp. 3719-3728.

The use of filamentous bacteriophage fd to deliver MAGE-A10 or MAGE-A3 HLA-A2-restricted peptides and to induce strong antitumor CTL responses

ROMANO, CHIARA;SANTONI, Angela;
2008

Abstract

Delivery of tumor-associated Ag-derived peptides in a high immunogenic form represents one of the key issues for effective peptide-based cancer vaccine development. We report herein the ability of nonpathogenic filamentous bacteriophage fd virions to deliver HLA-A2-restricted MAGE-A10(254-262)- or MAGE-A3(271-279) derived peptides and to elicit potent specific CTL responses in vitro and in vivo. Interestingly, human anti-MAGE-A3(271-279)-specific CTLs were able to kill human MAGE-A3(+) tumor cells, even if these cells naturally express a low amount of MAGE-A3(271-279) peptide-HLA epitope surface complexes and are usually not recognized by CTLs generated by conventional stimulation procedures. MAGE-A3(171-279)-specific/CD8(+) CTL clones were isolated from in vitro cultures, and their high avidity for Ag recognition was assessed. Moreover, in vivo tumor protection assay showed that vaccination of humanized HHD (HLA-A2.1(+)/H2-D(b+)) transgenic mice with phage particles expressing MAGE-A3(271-279) derived peptides hampered tumor growth. Overall, these data indicate that engineered filamentous bacteriophage virions increase substantially the immunogenicity of delivered tumor-associated Ag-derived peptides, thus representing a novel powerful system for the development of effective peptide-based cancer vaccines.
2008
01 Pubblicazione su rivista::01a Articolo in rivista
The use of filamentous bacteriophage fd to deliver MAGE-A10 or MAGE-A3 HLA-A2-restricted peptides and to induce strong antitumor CTL responses / R., Sartorius; P., Pisu; L., D'Apice; L., Pizzella; Romano, Chiara; G., Cortese; A., Giorgini; Santoni, Angela; F., Velotti; P., De Berardinis. - In: JOURNAL OF IMMUNOLOGY. - ISSN 0022-1767. - STAMPA. - 180:6(2008), pp. 3719-3728.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/87181
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 28
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 49
social impact