Analysis of ranking data is required in several research fields. In the present work we review statistical models for random rankings and propose an original generalization of a popular parametric distribution, that we name extended Plackett-Luce model, to account for the order of the ranking elicitation process. We illustrate the validity of the novel model with its successful maximum likelihood estimation from the real data set of the Large Fragment Phage Display (LFPD) ex- periment, where the epitope mapping of a specific human protein is the main goal. In particular we address the heterogeneous nature of theexperimental units via a finite mixture model approach and compare the performances when alternative ranking models are employed as mixture components

Mixture models for ranked data classification / Mollica, Cristina; Tardella, Luca. - ELETTRONICO. - (2013), pp. 335-338. (Intervento presentato al convegno 9th Meeting of the Classification and Data Analysis Group tenutosi a Modena).

Mixture models for ranked data classification

MOLLICA, CRISTINA;TARDELLA, Luca
2013

Abstract

Analysis of ranking data is required in several research fields. In the present work we review statistical models for random rankings and propose an original generalization of a popular parametric distribution, that we name extended Plackett-Luce model, to account for the order of the ranking elicitation process. We illustrate the validity of the novel model with its successful maximum likelihood estimation from the real data set of the Large Fragment Phage Display (LFPD) ex- periment, where the epitope mapping of a specific human protein is the main goal. In particular we address the heterogeneous nature of theexperimental units via a finite mixture model approach and compare the performances when alternative ranking models are employed as mixture components
2013
9th Meeting of the Classification and Data Analysis Group
Ranking data; Plackett-Luce model; Mixture models; EM algorithm
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Mixture models for ranked data classification / Mollica, Cristina; Tardella, Luca. - ELETTRONICO. - (2013), pp. 335-338. (Intervento presentato al convegno 9th Meeting of the Classification and Data Analysis Group tenutosi a Modena).
File allegati a questo prodotto
File Dimensione Formato  
Mollica_Mixture_2013.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/871695
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact