A signed graph is a pair (G, S) where G is a graph and S is a subset of the edges of G. A circuit of G is even (resp. odd) if it contains an even (resp. odd) number of edges of S. A blocking pair of (G, S) is a pair of vertices s, t such that every odd circuit intersects at least one of s or t. In this paper, we characterize when the blocking pairs of a signed graph can be represented by 2-cuts in an auxiliary graph. We discuss the relevance of this result to the problem of recognizing even cycle matroids and to the problem of characterizing signed graphs with no odd-K5 minor.
Displaying blocking pairs in signed graphs / Guenin, B.; Pivotto, I.; Wollan, PAUL JOSEPH. - In: EUROPEAN JOURNAL OF COMBINATORICS. - ISSN 0195-6698. - STAMPA. - 51:(2016), pp. 135-164. [10.1016/j.ejc.2015.04.005]
Displaying blocking pairs in signed graphs
WOLLAN, PAUL JOSEPH
2016
Abstract
A signed graph is a pair (G, S) where G is a graph and S is a subset of the edges of G. A circuit of G is even (resp. odd) if it contains an even (resp. odd) number of edges of S. A blocking pair of (G, S) is a pair of vertices s, t such that every odd circuit intersects at least one of s or t. In this paper, we characterize when the blocking pairs of a signed graph can be represented by 2-cuts in an auxiliary graph. We discuss the relevance of this result to the problem of recognizing even cycle matroids and to the problem of characterizing signed graphs with no odd-K5 minor.File | Dimensione | Formato | |
---|---|---|---|
Wollan_Displaying_2016.pdf
accesso aperto
Note: Articolo principale
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
5.69 MB
Formato
Adobe PDF
|
5.69 MB | Adobe PDF | |
Wollan_Displaying_2016.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
731.99 kB
Formato
Unknown
|
731.99 kB | Unknown | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.