A signed graph is a pair (G, S) where G is a graph and S is a subset of the edges of G. A circuit of G is even (resp. odd) if it contains an even (resp. odd) number of edges of S. A blocking pair of (G, S) is a pair of vertices s, t such that every odd circuit intersects at least one of s or t. In this paper, we characterize when the blocking pairs of a signed graph can be represented by 2-cuts in an auxiliary graph. We discuss the relevance of this result to the problem of recognizing even cycle matroids and to the problem of characterizing signed graphs with no odd-K5 minor.

Displaying blocking pairs in signed graphs / Guenin, B.; Pivotto, I.; Wollan, PAUL JOSEPH. - In: EUROPEAN JOURNAL OF COMBINATORICS. - ISSN 0195-6698. - STAMPA. - 51:(2016), pp. 135-164. [10.1016/j.ejc.2015.04.005]

Displaying blocking pairs in signed graphs

WOLLAN, PAUL JOSEPH
2016

Abstract

A signed graph is a pair (G, S) where G is a graph and S is a subset of the edges of G. A circuit of G is even (resp. odd) if it contains an even (resp. odd) number of edges of S. A blocking pair of (G, S) is a pair of vertices s, t such that every odd circuit intersects at least one of s or t. In this paper, we characterize when the blocking pairs of a signed graph can be represented by 2-cuts in an auxiliary graph. We discuss the relevance of this result to the problem of recognizing even cycle matroids and to the problem of characterizing signed graphs with no odd-K5 minor.
2016
Discrete Mathematics and Combinatorics; Matroid; Minor; binary matroids
01 Pubblicazione su rivista::01a Articolo in rivista
Displaying blocking pairs in signed graphs / Guenin, B.; Pivotto, I.; Wollan, PAUL JOSEPH. - In: EUROPEAN JOURNAL OF COMBINATORICS. - ISSN 0195-6698. - STAMPA. - 51:(2016), pp. 135-164. [10.1016/j.ejc.2015.04.005]
File allegati a questo prodotto
File Dimensione Formato  
Wollan_Displaying_2016.pdf

accesso aperto

Note: Articolo principale
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 5.69 MB
Formato Adobe PDF
5.69 MB Adobe PDF
Wollan_Displaying_2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 731.99 kB
Formato Unknown
731.99 kB Unknown   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/871661
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact