This paper contains new uniqueness results of the boundary blow-up viscosity solutions of second order elliptic equations, generalizing a well known result of Marcus-Veron for the Laplace operator

On the uniqueness of blow-up solutions of fully nonlinear elliptic equations / Vitolo, Antonio; Amendola, Maria E.; Galise, Giulio. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - STAMPA. - SUPPL.(2013), pp. 771-780.

On the uniqueness of blow-up solutions of fully nonlinear elliptic equations

GALISE, GIULIO
2013

Abstract

This paper contains new uniqueness results of the boundary blow-up viscosity solutions of second order elliptic equations, generalizing a well known result of Marcus-Veron for the Laplace operator
2013
Blow-up; Elliptic equations, fully nonlinear equations, maximum principle, viscosity solutions, analysis, applied mathematics, discrete mathematics and combinatorics
01 Pubblicazione su rivista::01a Articolo in rivista
On the uniqueness of blow-up solutions of fully nonlinear elliptic equations / Vitolo, Antonio; Amendola, Maria E.; Galise, Giulio. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - STAMPA. - SUPPL.(2013), pp. 771-780.
File allegati a questo prodotto
File Dimensione Formato  
Vitolo_On-the-uniqueness_2013.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 374.92 kB
Formato Adobe PDF
374.92 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/871051
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact