Laser propulsion and guide of nanosized objects is fundamental for a wide number of applications. These applications are often limited by the fact that the optical forces acting on nanoparticles are almost negligible even in the favorable case of metallic particles and hence large laser powers are needed to accelerate and guide nanosize devices in practical applications. Furthermore, metallic nanoparticles exhibit strong absorption bands and scattering and this makes more difficult controlling nanopropulsion. Thus, finding some mechanism enhancing the optomechanical interaction at the nanoscale controlled by laser is specifically challenging and pivotal. Here, we demonstrate a novel physical effect where the well-known adiabatic localization of the enhanced plasmonic surface field on the apex of metallic nanocones produces a significant optical pressure employable as a propulsive mechanism. The proposed method gives the possibility to develop new photonics devices to accelerate metallic nanobullets over long distances for a variety of applications.

Laser propulsion of nanobullets by adiabatic compression of surface plasmon polaritons / Folli, Viola; Ruocco, Giancarlo; Conti, Claudio. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - ELETTRONICO. - 5:(2015), p. 17652. [10.1038/srep17652]

Laser propulsion of nanobullets by adiabatic compression of surface plasmon polaritons

FOLLI, VIOLA;RUOCCO, Giancarlo;CONTI, CLAUDIO
2015

Abstract

Laser propulsion and guide of nanosized objects is fundamental for a wide number of applications. These applications are often limited by the fact that the optical forces acting on nanoparticles are almost negligible even in the favorable case of metallic particles and hence large laser powers are needed to accelerate and guide nanosize devices in practical applications. Furthermore, metallic nanoparticles exhibit strong absorption bands and scattering and this makes more difficult controlling nanopropulsion. Thus, finding some mechanism enhancing the optomechanical interaction at the nanoscale controlled by laser is specifically challenging and pivotal. Here, we demonstrate a novel physical effect where the well-known adiabatic localization of the enhanced plasmonic surface field on the apex of metallic nanocones produces a significant optical pressure employable as a propulsive mechanism. The proposed method gives the possibility to develop new photonics devices to accelerate metallic nanobullets over long distances for a variety of applications.
2015
laser propulsion; plasmon; adiabatic compression
01 Pubblicazione su rivista::01a Articolo in rivista
Laser propulsion of nanobullets by adiabatic compression of surface plasmon polaritons / Folli, Viola; Ruocco, Giancarlo; Conti, Claudio. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - ELETTRONICO. - 5:(2015), p. 17652. [10.1038/srep17652]
File allegati a questo prodotto
File Dimensione Formato  
Folli_Laser_2015.pdf

accesso aperto

Note: articolo
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/869697
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact