We characterize $t$-structures in stable $\infty$-categories as suitable quasicategorical factorization systems. More precisely we show that a $t$-structure $\mathfrak{t}$ on a stable $\infty$-category $\mathbf{C}$ is equivalent to a normal torsion theory $\mathbb{F}$ on $\mathbf{C}$, i.e. to a factorization system $\mathbb{F}=(\mathcal{E},\mathcal{M})$ where both classes satisfy the 3-for-2 cancellation property, and a certain compatibility with pullbacks/pushouts.
t-structures are normal torsion theories / Fiorenza, Domenico; Loregiàn, Fosco. - In: APPLIED CATEGORICAL STRUCTURES. - ISSN 0927-2852. - STAMPA. - 24:2(2016), pp. 181-208. [10.1007/s10485-015-9393-z]
t-structures are normal torsion theories
FIORENZA, DOMENICO;
2016
Abstract
We characterize $t$-structures in stable $\infty$-categories as suitable quasicategorical factorization systems. More precisely we show that a $t$-structure $\mathfrak{t}$ on a stable $\infty$-category $\mathbf{C}$ is equivalent to a normal torsion theory $\mathbb{F}$ on $\mathbf{C}$, i.e. to a factorization system $\mathbb{F}=(\mathcal{E},\mathcal{M})$ where both classes satisfy the 3-for-2 cancellation property, and a certain compatibility with pullbacks/pushouts.File | Dimensione | Formato | |
---|---|---|---|
Fiorenza_Tstructures_2016.pdf
solo gestori archivio
Note: Articolo principale
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
379.86 kB
Formato
Adobe PDF
|
379.86 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.