In this paper we prove an existence result for the following singular elliptic system (Formula presented.) where Ω is a bounded open set in ℝN (N ≥ 2), −∆p is the p-laplacian operator, a(x) and b(x) are suitable Lebesgue functions and q > 0, 0 < θ < 1, p > 1 are positive parameters satisfying suitable assumptions.

Existence of solutions to a non-variational singular elliptic system with unbounded weights / De Cave, Linda Maria; Oliva, Francescantonio; Strani, Marta. - In: MATHEMATISCHE NACHRICHTEN. - ISSN 0025-584X. - STAMPA. - (2017).

Existence of solutions to a non-variational singular elliptic system with unbounded weights

OLIVA, FRANCESCANTONIO;
2017

Abstract

In this paper we prove an existence result for the following singular elliptic system (Formula presented.) where Ω is a bounded open set in ℝN (N ≥ 2), −∆p is the p-laplacian operator, a(x) and b(x) are suitable Lebesgue functions and q > 0, 0 < θ < 1, p > 1 are positive parameters satisfying suitable assumptions.
2017
Boundary value problems for second-order elliptic systems; fixed-point theorems; nonlinear elliptic equations; singular elliptic equations
01 Pubblicazione su rivista::01a Articolo in rivista
Existence of solutions to a non-variational singular elliptic system with unbounded weights / De Cave, Linda Maria; Oliva, Francescantonio; Strani, Marta. - In: MATHEMATISCHE NACHRICHTEN. - ISSN 0025-584X. - STAMPA. - (2017).
File allegati a questo prodotto
File Dimensione Formato  
DeCave_Existence_2016.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 200.12 kB
Formato Adobe PDF
200.12 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/868877
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact