A poromechanical model of partially saturated deformable porous media is proposed based on a phase field approach at modeling the behavior of the mixture of liquid water and wet air, which saturates the pore space, the phase field being the saturation (ratio). While the standard retention curve is expected still to provide the intrinsic retention properties of the porous skeleton, depending on the porous texture, an enhanced description of surface tension between the wetting (liquid water) and the non-wetting (wet air) fluid, occupying the pore space, is stated considering a regularization of the phase field model based on an additional contribution to the overall free energy depending on the saturation gradient. The aim is to provide a more refined description of surface tension interactions. An enhanced constitutive relation for the capillary pressure is established together with a suitable generalization of Darcy’s law, in which the gradient of the capillary pressure is replaced by the gradient of the so-called generalized chemical potential, which also accounts for the “force” associated to the local free energy of the phase field model. A micro-scale heuristic interpretation of the novel constitutive law of capillary pressure is proposed, in order to compare the envisaged model with that one endowed with the concept of average interfacial area. The considered poromechanical model is formulated within the framework of strain gradient theory in order to account for possible effects, at laboratory scale, of the micro-scale hydro-mechanical couplings between highly-localized flows (fingering) and localized deformations of the skeleton (fracturing).

Phase field modeling of partially saturated deformable porous media / Sciarra, Giulio. - In: JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS. - ISSN 0022-5096. - STAMPA. - 94:(2016), pp. 230-256. [10.1016/j.jmps.2016.04.018]

Phase field modeling of partially saturated deformable porous media

SCIARRA, Giulio
2016

Abstract

A poromechanical model of partially saturated deformable porous media is proposed based on a phase field approach at modeling the behavior of the mixture of liquid water and wet air, which saturates the pore space, the phase field being the saturation (ratio). While the standard retention curve is expected still to provide the intrinsic retention properties of the porous skeleton, depending on the porous texture, an enhanced description of surface tension between the wetting (liquid water) and the non-wetting (wet air) fluid, occupying the pore space, is stated considering a regularization of the phase field model based on an additional contribution to the overall free energy depending on the saturation gradient. The aim is to provide a more refined description of surface tension interactions. An enhanced constitutive relation for the capillary pressure is established together with a suitable generalization of Darcy’s law, in which the gradient of the capillary pressure is replaced by the gradient of the so-called generalized chemical potential, which also accounts for the “force” associated to the local free energy of the phase field model. A micro-scale heuristic interpretation of the novel constitutive law of capillary pressure is proposed, in order to compare the envisaged model with that one endowed with the concept of average interfacial area. The considered poromechanical model is formulated within the framework of strain gradient theory in order to account for possible effects, at laboratory scale, of the micro-scale hydro-mechanical couplings between highly-localized flows (fingering) and localized deformations of the skeleton (fracturing).
2016
phase field; poromechanics; strain gradient; capillarity
01 Pubblicazione su rivista::01a Articolo in rivista
Phase field modeling of partially saturated deformable porous media / Sciarra, Giulio. - In: JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS. - ISSN 0022-5096. - STAMPA. - 94:(2016), pp. 230-256. [10.1016/j.jmps.2016.04.018]
File allegati a questo prodotto
File Dimensione Formato  
Sciarra_Phase-field-modeling_preprint_2016.pdf

solo gestori archivio

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.02 MB
Formato Adobe PDF
2.02 MB Adobe PDF   Contatta l'autore
Sciarra_Phase-field-modeling_2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.93 MB
Formato Adobe PDF
1.93 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/868383
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact