Givena M M Hermitian matrix H with possibly degenerate eigenvalues E11<E2<E3<... , we provide, in the limit M →∞, a lower bound for the gap μ 2=E2−E1assum-ing that i) the eigenvector (eigenvectors) associated to E1is ergodic (are all ergodic) and ii) theoff-diagonal terms of H vanish for M→∞. Under these hypotheses, we find lim M→∞2 ≥ limM→∞minnHn,n. This general result turns out to be important for upper bounding the relax- ation time of linear master equations characterized by a matrix equal, or isospectral, to H.As an application, we consider symmetric random walks with infinitesimal jump rates and show that the relaxation time is upper bounded by the configurations (or nodes) with minimal degre
Asymptotic lower bound for the gap of Hermitian matrices having ergodic ground states and infinitesimal off-diagonal elements / Ostilli, Massimo; Presilla, Carlo. - In: EUROPHYSICS LETTERS. - ISSN 0295-5075. - STAMPA. - 113:4(2016), p. 40002. [10.1209/0295-5075/113/40002]
Asymptotic lower bound for the gap of Hermitian matrices having ergodic ground states and infinitesimal off-diagonal elements
OSTILLI, Massimo;PRESILLA, Carlo
2016
Abstract
Givena M M Hermitian matrix H with possibly degenerate eigenvalues E11File | Dimensione | Formato | |
---|---|---|---|
Ostilli_Asymptotic_2016.pdf
solo gestori archivio
Note: articolo completo
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
182.8 kB
Formato
Adobe PDF
|
182.8 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.