In this paper, we study the problem   −∆u = |x| α u p α + |x| β u in Ω u> 0 in Ω  u =0 on ∂Ω, (0.1) , Ω is a smooth bounded domain of R N with 0 ∈ Ω where p α = N +2+2α N −2 and N ≥ 4. We show that, for α ≥ 0 and 0 ≤ β ≤ N − 4, there exists one solution concentrating at x = 0 as → 0. Moreover, we prove that, if Ω is a ball, there exist no radial solution if α = β > N − 4.

Linear perturbations for the critical Hénon problem / Gladiali, Francesca; Grossi, Massimo. - In: DIFFERENTIAL AND INTEGRAL EQUATIONS. - ISSN 0893-4983. - STAMPA. - 28:7/8(2015), pp. 733-752.

Linear perturbations for the critical Hénon problem

GROSSI, Massimo
2015

Abstract

In this paper, we study the problem   −∆u = |x| α u p α + |x| β u in Ω u> 0 in Ω  u =0 on ∂Ω, (0.1) , Ω is a smooth bounded domain of R N with 0 ∈ Ω where p α = N +2+2α N −2 and N ≥ 4. We show that, for α ≥ 0 and 0 ≤ β ≤ N − 4, there exists one solution concentrating at x = 0 as → 0. Moreover, we prove that, if Ω is a ball, there exist no radial solution if α = β > N − 4.
2015
Sobolev; perturbation; critical
01 Pubblicazione su rivista::01a Articolo in rivista
Linear perturbations for the critical Hénon problem / Gladiali, Francesca; Grossi, Massimo. - In: DIFFERENTIAL AND INTEGRAL EQUATIONS. - ISSN 0893-4983. - STAMPA. - 28:7/8(2015), pp. 733-752.
File allegati a questo prodotto
File Dimensione Formato  
Gladiali_Linear_2015.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 404.09 kB
Formato Adobe PDF
404.09 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/867622
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 12
social impact