In this paper, we study the problem −∆u = |x| α u p α + |x| β u in Ω u> 0 in Ω u =0 on ∂Ω, (0.1) , Ω is a smooth bounded domain of R N with 0 ∈ Ω where p α = N +2+2α N −2 and N ≥ 4. We show that, for α ≥ 0 and 0 ≤ β ≤ N − 4, there exists one solution concentrating at x = 0 as → 0. Moreover, we prove that, if Ω is a ball, there exist no radial solution if α = β > N − 4.
Linear perturbations for the critical Hénon problem / Gladiali, Francesca; Grossi, Massimo. - In: DIFFERENTIAL AND INTEGRAL EQUATIONS. - ISSN 0893-4983. - STAMPA. - 28:7/8(2015), pp. 733-752.
Linear perturbations for the critical Hénon problem
GROSSI, Massimo
2015
Abstract
In this paper, we study the problem −∆u = |x| α u p α + |x| β u in Ω u> 0 in Ω u =0 on ∂Ω, (0.1) , Ω is a smooth bounded domain of R N with 0 ∈ Ω where p α = N +2+2α N −2 and N ≥ 4. We show that, for α ≥ 0 and 0 ≤ β ≤ N − 4, there exists one solution concentrating at x = 0 as → 0. Moreover, we prove that, if Ω is a ball, there exist no radial solution if α = β > N − 4.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Gladiali_Linear_2015.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
404.09 kB
Formato
Adobe PDF
|
404.09 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.