The research activity main focus are several planning, design and operation issues of long HVAC interconnections of OWFs and OWF clusters, considering power ratings of many hundreds of MW and distances from shore exceeding 70-80 km. This kind of applications is conventionally considered exclusive prerogative of the VSC-HVDC technology, mainly due to the reactive power surplus issues associated to long HVAC cables, making the latter technology too much costly or even unfeasible beyond certain values of power ratings and lengths. However, the significant advancement experienced in very last years by HVAC cable technology, along with the adoption of “maximum utilization” operating conditions, and possibly of additional intermediate shunt compensation, could reverse this trend making HVAC a feasible and even competitive option for interconnections having power ratings/lengths unattainable so far. Hence, the first purpose of the work was to investigate the feasibility in the steady state of an OWF interconnector having unprecedented power ratings and lengths. Assuming maximum cable utilization as a prerequisite for the economic sizing and operation of a HVAC cable system, a tool for the determination of proper operating setpoints for radial systems composed of several series-connected stretches with multiple power injection points, as the interconnections of OWF clusters may be, was primarily needed. Two procedures were developed to this purpose, respectively named the Approximate Procedure (AP) and the Symmetrical Profiles (SP) Procedure. Taking inspiration from existing OWF projects in the North Sea, a hypothetical test system consisting in a radial 400 kV-50 Hz submarine cable interconnector with a length of 199 km and multiple power injection points totalling 2 GW was considered. A preliminary sizing of the system, i.e. the choice of the cables and the design of shunt compensation, was carried out. Both of the proposed procedures were then applied to the considered test system, in order to verify their ability to guarantee maximum utilization in different loading and operating conditions. The resulting steady-state regimes were then analysed. In order to verify the general effectiveness of the proposed SP method and its possible replacement with an OPF standard algorithm, allowing for explicitly taking into account generator capabilities and compensation control range, a comparison between the results by the two procedures was performed afterwards. The OPF calculations were carried out by means of the routines included in the MATPOWER package. At a later stage, several economic aspects related to HVAC interconnections were faced. The economic profitability of intermediate compensation in the long-distance interconnection of GW-sized OWFs was assessed, by comparing additional capital costs to the saving in terms of capitalized losses. Finally, an updated technical-economic comparison between HVAC and VSC-HVDC systems for the interconnection of a hypothetical 1-GW OWF was carried out, considering capital investments as well as operating costs, the latter calculated by capitalizing energy losses and energy not supplied due to outages of the transmission system. The study shows how technical progress along with proper design and operation can make EHVAC a viable alternative for the connection of GW-sized OWF at distances largely exceeding limit values usually associated to AC. Furthermore, the proposed economic analysis suggests the convenience of AC over DC in a wide range of transmission distances, considered unattainable so far, when system availability is taken into account.

Il tema della ricerca riguarda la pianificazione, progettazione ed esercizio di lunghe interconnessioni in alta tensione e corrente alternata (HVAC) di wind farm offshore (OWF), con potenze nell’ordine dei GW e distanze dalla costa maggiori di 70-80 km. Questo genere di applicazioni è convenzionalmente considerato appannaggio esclusivo della tecnologia VSC-HVDC, principalmente a causa dei problemi legati al surplus di potenza reattiva associati ai lunghi cavi HVAC, che rendono tale soluzione troppo costosa o addirittura impraticabile oltre certi valori di potenza nominali e lunghezze. Tuttavia, il significativo progresso tecnologico degli ultimi anni, unito all'adozione di condizioni di esercizio di “massima utilizzazione”, ed, eventualmente, di compensazione shunt reattiva installata in posizione intermedia lungo la linea, potrebbe invertire questa tendenza rendendo l’opzione HVAC non solo fattibile ma anche economicamente competitiva per le interconnessioni con potenze/lunghezze ritenute sino ad oggi irrealizzabili. Pertanto, il primo obiettivo del lavoro è stato quello di valutare la fattibilità in regime permanente di sistemi di interconnessione per OWF aventi potenza e lunghezze paragonabili a quelle delle installazioni più recenti. Avendo assunto la condizione di “massima utilizzazione” del cavo come prerequisito per il dimensionamento e l’esercizio di un sistema in cavo HVAC, in primo luogo è stato necessario sviluppare uno strumento per la determinazione delle condizioni operative per interconnessioni radiali con più punti di iniezione di potenza, come di fatto potrebbero configurarsi le interconnessioni di cluster di OWF. A questo scopo, si sono sviluppate due procedure, la Procedura Approssimata (AP) e la Procedura Simmetrical Profiles (SP). Prendendo spunto da progetti reali di OWF nel Mare del Nord, si è considerato un ipotetico sistema test costituito da un’interconnessione radiale a 400 kV-50 Hz, avente una lunghezza di 199 km ed una capacità di trasmissione di 2 GW. Dapprima è stata effettuata la progettazione preliminare del sistema, ossia la scelta dei cavi e il dimensionamento della compensazione reattiva. Entrambe le procedure proposte sono state quindi applicate al sistema test, al fine di verificare l’efficacia di ciascuna nel garantire la massima utilizzazione al variare delle condizioni di esercizio, e si sono analizzati i risultanti regimi permanenti. Al fine di verificare l'efficacia generale del metodo SP proposto e la sua eventuale sostituzione con un algoritmo standard di optimal power flow (OPF), che consenta di tenere conto esplicitamente di vincoli operativi quali le capability dei generatori e il campo di regolazione della compensazione variabile, si è effettuato un confronto tra i risultati di entrambi gli approcci. I calcoli di OPF sono stati effettuati mediante le routine incluse nel pacchetto MATPOWER. In seguito, si sono affrontati alcuni aspetti economici legati alle interconnessioni HVAC. In primo luogo, si è valutata la convenienza economica dell’adozione della compensazione intermedia per interconnessioni di OWF, confrontando i costi capitali addizionali con il risparmio in termini di perdite di trasmissione. Successivamente, si è effettuato il confronto tecnico-economico tra sistemi HVAC e VSC-HVDC per l'interconnessione di un’ipotetica OWF da 1 GW, considerando i costi capitali e i costi di esercizio, questi ultimi calcolati attualizzando l’energia non fornita dovuta sia alle perdite di trasmissione che ai fuori servizio del sistema. Lo studio mostra come il progresso tecnico unito ad un’appropriata progettazione ed esercizio può rendere l’opzione in cavo HVAC una valida alternativa per la connessione di OWF aventi taglie dell’ordine dei GW a distanze sostanzialmente superiori ai valori limite di solito associate ai collegamenti in corrente alternata. Inoltre, l'analisi economica proposta suggerisce la convenienza della soluzione HVAC rispetto alla VSC-HVDC in una vasta gamma di distanze di trasmissione, considerate sino ad oggi irrealizzabili.

HVAC submarine interconnections and networks / Schembari, Maddalena. - ELETTRONICO. - (In corso di stampa).

HVAC submarine interconnections and networks

SCHEMBARI, MADDALENA
In corso di stampa

Abstract

The research activity main focus are several planning, design and operation issues of long HVAC interconnections of OWFs and OWF clusters, considering power ratings of many hundreds of MW and distances from shore exceeding 70-80 km. This kind of applications is conventionally considered exclusive prerogative of the VSC-HVDC technology, mainly due to the reactive power surplus issues associated to long HVAC cables, making the latter technology too much costly or even unfeasible beyond certain values of power ratings and lengths. However, the significant advancement experienced in very last years by HVAC cable technology, along with the adoption of “maximum utilization” operating conditions, and possibly of additional intermediate shunt compensation, could reverse this trend making HVAC a feasible and even competitive option for interconnections having power ratings/lengths unattainable so far. Hence, the first purpose of the work was to investigate the feasibility in the steady state of an OWF interconnector having unprecedented power ratings and lengths. Assuming maximum cable utilization as a prerequisite for the economic sizing and operation of a HVAC cable system, a tool for the determination of proper operating setpoints for radial systems composed of several series-connected stretches with multiple power injection points, as the interconnections of OWF clusters may be, was primarily needed. Two procedures were developed to this purpose, respectively named the Approximate Procedure (AP) and the Symmetrical Profiles (SP) Procedure. Taking inspiration from existing OWF projects in the North Sea, a hypothetical test system consisting in a radial 400 kV-50 Hz submarine cable interconnector with a length of 199 km and multiple power injection points totalling 2 GW was considered. A preliminary sizing of the system, i.e. the choice of the cables and the design of shunt compensation, was carried out. Both of the proposed procedures were then applied to the considered test system, in order to verify their ability to guarantee maximum utilization in different loading and operating conditions. The resulting steady-state regimes were then analysed. In order to verify the general effectiveness of the proposed SP method and its possible replacement with an OPF standard algorithm, allowing for explicitly taking into account generator capabilities and compensation control range, a comparison between the results by the two procedures was performed afterwards. The OPF calculations were carried out by means of the routines included in the MATPOWER package. At a later stage, several economic aspects related to HVAC interconnections were faced. The economic profitability of intermediate compensation in the long-distance interconnection of GW-sized OWFs was assessed, by comparing additional capital costs to the saving in terms of capitalized losses. Finally, an updated technical-economic comparison between HVAC and VSC-HVDC systems for the interconnection of a hypothetical 1-GW OWF was carried out, considering capital investments as well as operating costs, the latter calculated by capitalizing energy losses and energy not supplied due to outages of the transmission system. The study shows how technical progress along with proper design and operation can make EHVAC a viable alternative for the connection of GW-sized OWF at distances largely exceeding limit values usually associated to AC. Furthermore, the proposed economic analysis suggests the convenience of AC over DC in a wide range of transmission distances, considered unattainable so far, when system availability is taken into account.
In corso di stampa
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/867603
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact