We consider the space of all vector-valued holomorphic modular forms f:H_n→Z of transformation type f(MZ)=vr(M)det(CZ+D)ϱ(CZ+D)f(Z). ϱ:GL(n,C)→GL(Z) is a rational representation on a finite dimensional complex vector space Z. These spaces can be collected in a graded A(Γ)-module We treat in this paper some special cases in genus 2. The first one is essentially due to Wieber. Thus we consider a variant of this case and a new example. In this final case the starting weight is 1/2, the starting multiplier system is the theta multiplier system v_ϑ and for ϱ we take the standard representation. In all these cases we will determine the structure of the spaces.
Basic vector valued Siegel modular forms of genus two / SALVATI MANNI, Riccardo; Freitag, Eberhard. - In: OSAKA JOURNAL OF MATHEMATICS. - ISSN 0030-6126. - STAMPA. - 52:3(2015), pp. 879-895.
Basic vector valued Siegel modular forms of genus two
SALVATI MANNI, Riccardo;
2015
Abstract
We consider the space of all vector-valued holomorphic modular forms f:H_n→Z of transformation type f(MZ)=vr(M)det(CZ+D)ϱ(CZ+D)f(Z). ϱ:GL(n,C)→GL(Z) is a rational representation on a finite dimensional complex vector space Z. These spaces can be collected in a graded A(Γ)-module We treat in this paper some special cases in genus 2. The first one is essentially due to Wieber. Thus we consider a variant of this case and a new example. In this final case the starting weight is 1/2, the starting multiplier system is the theta multiplier system v_ϑ and for ϱ we take the standard representation. In all these cases we will determine the structure of the spaces.File | Dimensione | Formato | |
---|---|---|---|
Freitag_Basic-vector-valued_2015.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
231.56 kB
Formato
Adobe PDF
|
231.56 kB | Adobe PDF | |
Freitag_Basic-vector-valued_2015.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
277.69 kB
Formato
Adobe PDF
|
277.69 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.