We derive a discrete version of the results of Davini et al. (Convergence of the solutions of the discounted Hamilton-Jacobi equation. Invent Math, 2016). If M is a compact metric space, a continuous cost function and , the unique solution to the discrete -discounted equation is the only function such that We prove that there exists a unique constant such that the family of is bounded as and that for this , the family uniformly converges to a function which then verifies The proofs make use of Discrete Weak KAM theory. We also characterize in terms of Peierls barrier and projected Mather measures.

Convergence of the solutions of the discounted equation: the discrete case / Davini, Andrea; Fathi, Albert; Iturriaga, Renato; Zavidovique, Maxime. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - STAMPA. - 284:3(2016), pp. 1021-1034. [10.1007/s00209-016-1685-y]

Convergence of the solutions of the discounted equation: the discrete case

DAVINI, ANDREA;
2016

Abstract

We derive a discrete version of the results of Davini et al. (Convergence of the solutions of the discounted Hamilton-Jacobi equation. Invent Math, 2016). If M is a compact metric space, a continuous cost function and , the unique solution to the discrete -discounted equation is the only function such that We prove that there exists a unique constant such that the family of is bounded as and that for this , the family uniformly converges to a function which then verifies The proofs make use of Discrete Weak KAM theory. We also characterize in terms of Peierls barrier and projected Mather measures.
2016
Hamilton-Jacobi equation; viscosity solutions; Hamilton–Jacobi equations
01 Pubblicazione su rivista::01a Articolo in rivista
Convergence of the solutions of the discounted equation: the discrete case / Davini, Andrea; Fathi, Albert; Iturriaga, Renato; Zavidovique, Maxime. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - STAMPA. - 284:3(2016), pp. 1021-1034. [10.1007/s00209-016-1685-y]
File allegati a questo prodotto
File Dimensione Formato  
Davini_preprint_Convergence-of-the-solutions_2016.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 327.27 kB
Formato Adobe PDF
327.27 kB Adobe PDF
Davini_Convergence-of-the-solutions_2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 438.72 kB
Formato Adobe PDF
438.72 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/866716
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact