In the design of scaffolds for tissue engineering applications, morphological parameters such as pore size, shape, and interconnectivity, as well as transport properties, should always be tailored in view of their clinical application. In this work, we demonstrate that a regular and ordered porous texture is fundamental to achieve an even cell distribution within the scaffold under perfusion seeding. To prove our hypothesis, two sets of alginate scaffolds were fabricated using two different technological approaches of the same method: gas-in-liquid foam templating. In the first one, foam was obtained by insufflating argon in a solution of alginate and a surfactant under stirring. In the second one, foam was generated inside a flow-focusing microfluidic device under highly controlled and reproducible conditions. As a result, in the former case the derived scaffold (GF) was characterised by polydispersed pores and interconnects, while in the latter (FL), the porous structure was highly regular both with respect to the spatial arrangement of pores and interconnects and their monodispersity. Cell seeding within perfusion bioreactors of the two scaffolds revealed that cell population inside FL scaffolds was quantitatively higher than in GF. Furthermore, seeding efficiency data for μFL samples were characterized by a lower standard deviation, indicating higher reproducibility among replicates. Finally, these results were validated by simulation of local flow velocity (CFD) inside the scaffolds proving that FL was around one order of magnitude more permeable than GF.
Correlation between porous texture and cell seeding efficiency of gas foaming and microfluidic foaming scaffolds / Costantini, Marco; Colosi, Cristina; Mozetic, Pamela; Jaroszewicz, Jakub; Tosato, Alessia; Rainer, Alberto; Trombetta, Marcella; Swiszkowski, Wojciech; Dentini, Mariella; Barbetta, Andrea. - In: MATERIALS SCIENCE AND ENGINEERING. C, BIOMIMETIC MATERIALS, SENSORS AND SYSTEMS. - ISSN 0928-4931. - STAMPA. - C 62:(2016), pp. 668-677. [10.1016/j.msec.2016.02.010]
Correlation between porous texture and cell seeding efficiency of gas foaming and microfluidic foaming scaffolds
COSTANTINI, MARCO;COLOSI, CRISTINA;DENTINI, Mariella;BARBETTA, ANDREA
2016
Abstract
In the design of scaffolds for tissue engineering applications, morphological parameters such as pore size, shape, and interconnectivity, as well as transport properties, should always be tailored in view of their clinical application. In this work, we demonstrate that a regular and ordered porous texture is fundamental to achieve an even cell distribution within the scaffold under perfusion seeding. To prove our hypothesis, two sets of alginate scaffolds were fabricated using two different technological approaches of the same method: gas-in-liquid foam templating. In the first one, foam was obtained by insufflating argon in a solution of alginate and a surfactant under stirring. In the second one, foam was generated inside a flow-focusing microfluidic device under highly controlled and reproducible conditions. As a result, in the former case the derived scaffold (GF) was characterised by polydispersed pores and interconnects, while in the latter (FL), the porous structure was highly regular both with respect to the spatial arrangement of pores and interconnects and their monodispersity. Cell seeding within perfusion bioreactors of the two scaffolds revealed that cell population inside FL scaffolds was quantitatively higher than in GF. Furthermore, seeding efficiency data for μFL samples were characterized by a lower standard deviation, indicating higher reproducibility among replicates. Finally, these results were validated by simulation of local flow velocity (CFD) inside the scaffolds proving that FL was around one order of magnitude more permeable than GF.File | Dimensione | Formato | |
---|---|---|---|
Costantini_Correlation_2016.pdf
solo gestori archivio
Note: paper
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.7 MB
Formato
Adobe PDF
|
1.7 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.