In this paper we reinvestigate the structure of the solution of a well-known Love’s problem, related to the electrostatic field generated by two circular coaxial conducting disks, in terms of orthogonal polynomial expansions, enlightening the role of the recently introduced class of the Lucas–Lehmer polynomials. Moreover we show that the solution can be expanded more conveniently with respect to a Riesz basis obtained starting from Chebyshev polynomials.

Orthogonal polynomials and Riesz bases applied to the solution of Love's equation / Vellucci, Pierluigi; Bersani, Alberto Maria. - In: MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS. - ISSN 2326-7186. - ELETTRONICO. - 4:1(2016), pp. 55-66. [10.2140/memocs.2016.4.55]

Orthogonal polynomials and Riesz bases applied to the solution of Love's equation

VELLUCCI, PIERLUIGI
;
BERSANI, Alberto Maria
2016

Abstract

In this paper we reinvestigate the structure of the solution of a well-known Love’s problem, related to the electrostatic field generated by two circular coaxial conducting disks, in terms of orthogonal polynomial expansions, enlightening the role of the recently introduced class of the Lucas–Lehmer polynomials. Moreover we show that the solution can be expanded more conveniently with respect to a Riesz basis obtained starting from Chebyshev polynomials.
integral equations; numerical approximation and analysis; Love equation; Chebyshev polynomials; Lucas–Lehmer primality test; exponential bases; Riesz bases
01 Pubblicazione su rivista::01a Articolo in rivista
Orthogonal polynomials and Riesz bases applied to the solution of Love's equation / Vellucci, Pierluigi; Bersani, Alberto Maria. - In: MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS. - ISSN 2326-7186. - ELETTRONICO. - 4:1(2016), pp. 55-66. [10.2140/memocs.2016.4.55]
File allegati a questo prodotto
File Dimensione Formato  
Vellucci_orthogonal-polynomials_2016.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 452.78 kB
Formato Adobe PDF
452.78 kB Adobe PDF Visualizza/Apri PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/866057
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact