We investigate the structure of solutions of conservation laws with discontinuous flux under quite general assumption on the flux. We show that any entropy solution admits traces on the discontinuity set of the coefficients and we use this to prove the validity of a generalized Kato inequality for any pair of solutions. Applications to uniqueness of solutions are then given.
Structure of solutions of multidimensional conservation laws with discontinuous flux and applications to uniqueness / Crasta, Graziano; DE CICCO, Virginia; de Philippis, Guido; Ghiraldin, Francesco. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - STAMPA. - 221:2(2016), pp. 961-985. [10.1007/s00205-016-0976-0]
Structure of solutions of multidimensional conservation laws with discontinuous flux and applications to uniqueness
CRASTA, Graziano
;DE CICCO, Virginia;
2016
Abstract
We investigate the structure of solutions of conservation laws with discontinuous flux under quite general assumption on the flux. We show that any entropy solution admits traces on the discontinuity set of the coefficients and we use this to prove the validity of a generalized Kato inequality for any pair of solutions. Applications to uniqueness of solutions are then given.File | Dimensione | Formato | |
---|---|---|---|
Crasta_Structure-of-solutions_2016.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
520.88 kB
Formato
Adobe PDF
|
520.88 kB | Adobe PDF | |
Crasta_Structure-of-solutions_2016.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
581.99 kB
Formato
Adobe PDF
|
581.99 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.