AIMS: In this study, we evaluated the ability of the lipopeptide bacillomycin D and the antifungal drug amphotericin B as well as their combination, to inhibit Candida albicans biofilm formation and to accelerate keratinocyte cell migration. METHODS AND RESULTS: The antibiofilm activity of bacillomycin D and its combination with amphotericin B was carried out by crystal violet colorimetric method. Our results have shown that, when combined together at low concentrations nontoxic to mammalian cells, corresponding to 1/32 MIC (0·39 μg ml(-1) ) and 1/4 MIC (0·06 μg ml(-1) ) for bacillomycin D and amphotericin B, respectively, a clear antibiofilm activity is manifested (95% inhibition of biofilm formation) along with a clear inhibition of germ tube formation. Moreover, the effect of both drugs on preformed biofilm of C. albicans strain was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. The combination of the two antifungal compounds at 0·39 and 1 μg ml(-1) for bacillomycin D and amphotericin B, respectively, resulted in a clear enhancement of biofilm eradication compared to the results obtained with each drug alone. Furthermore, this combination was found to promote the closure of a gap produced in a monolayer of human keratinocytes. CONCLUSIONS: Bacillomycin D and its combination with amphotericin B display impressive anti-biofilm and wound-healing activities. SIGNIFICANCE AND IMPACT OF THE STUDY: Application of the lipopeptide bacillomycin D and the antifungal drug amphotericin B in medical devices may offer a promising alternative for topical treatment of Candida-associated infections in the setting of a wound.
Bacillomycin d and its combination with amphotericin b: promising antifungal compounds with powerful antibiofilm activity and wound-healing potency / Tabbene, Olfa; Azaiez, S.; DI GRAZIA, Antonio; Karkouch, I.; Ben Slimene, I.; Elkahoui, S.; Alfeddy, M. N.; Casciaro, Bruno; Luca, Vincenzo; Limam, F.; Mangoni, Maria Luisa. - In: JOURNAL OF APPLIED MICROBIOLOGY. - ISSN 1364-5072. - STAMPA. - 120:2(2016), pp. 289-300. [10.1111/jam.13030]
Bacillomycin d and its combination with amphotericin b: promising antifungal compounds with powerful antibiofilm activity and wound-healing potency
DI GRAZIA, ANTONIO;CASCIARO, BRUNO;LUCA, VINCENZO;MANGONI, Maria Luisa
2016
Abstract
AIMS: In this study, we evaluated the ability of the lipopeptide bacillomycin D and the antifungal drug amphotericin B as well as their combination, to inhibit Candida albicans biofilm formation and to accelerate keratinocyte cell migration. METHODS AND RESULTS: The antibiofilm activity of bacillomycin D and its combination with amphotericin B was carried out by crystal violet colorimetric method. Our results have shown that, when combined together at low concentrations nontoxic to mammalian cells, corresponding to 1/32 MIC (0·39 μg ml(-1) ) and 1/4 MIC (0·06 μg ml(-1) ) for bacillomycin D and amphotericin B, respectively, a clear antibiofilm activity is manifested (95% inhibition of biofilm formation) along with a clear inhibition of germ tube formation. Moreover, the effect of both drugs on preformed biofilm of C. albicans strain was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. The combination of the two antifungal compounds at 0·39 and 1 μg ml(-1) for bacillomycin D and amphotericin B, respectively, resulted in a clear enhancement of biofilm eradication compared to the results obtained with each drug alone. Furthermore, this combination was found to promote the closure of a gap produced in a monolayer of human keratinocytes. CONCLUSIONS: Bacillomycin D and its combination with amphotericin B display impressive anti-biofilm and wound-healing activities. SIGNIFICANCE AND IMPACT OF THE STUDY: Application of the lipopeptide bacillomycin D and the antifungal drug amphotericin B in medical devices may offer a promising alternative for topical treatment of Candida-associated infections in the setting of a wound.File | Dimensione | Formato | |
---|---|---|---|
Tabbene_Bacillomycin_2015
solo gestori archivio
Note: testo originale dell'articolo
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
916.57 kB
Formato
Adobe PDF
|
916.57 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.