We propose a fast method for high order approximations of the solution of $n$-dimensional parabolic problems over hyper-rectangular domains in the framework of the method of approximate approximations. This approach, combined with separated representations, makes our method effective also in very high dimensions. We report on numerical results illustrating that our formulas are accurate and provide the predicted approximation rate $6$ up to dimension $10^7$.

Approximation of solutions to multidimensional parabolic equations by approximate approximations / Lanzara, Flavia; Vladimir, Maz'Ya; Gunther, Schmidt. - In: APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS. - ISSN 1063-5203. - STAMPA. - 41:(2016), pp. 749-767. [http://dx.doi.org/10.1016/j.acha.2015.06.001]

Approximation of solutions to multidimensional parabolic equations by approximate approximations

LANZARA, Flavia;
2016

Abstract

We propose a fast method for high order approximations of the solution of $n$-dimensional parabolic problems over hyper-rectangular domains in the framework of the method of approximate approximations. This approach, combined with separated representations, makes our method effective also in very high dimensions. We report on numerical results illustrating that our formulas are accurate and provide the predicted approximation rate $6$ up to dimension $10^7$.
2016
higher dimensions; separated representations; parabolic equation; multidimensional convolution
01 Pubblicazione su rivista::01a Articolo in rivista
Approximation of solutions to multidimensional parabolic equations by approximate approximations / Lanzara, Flavia; Vladimir, Maz'Ya; Gunther, Schmidt. - In: APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS. - ISSN 1063-5203. - STAMPA. - 41:(2016), pp. 749-767. [http://dx.doi.org/10.1016/j.acha.2015.06.001]
File allegati a questo prodotto
File Dimensione Formato  
Lanzara_Approximation-of-solutions_2016.pdf

solo gestori archivio

Note: Articolo
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 458.52 kB
Formato Adobe PDF
458.52 kB Adobe PDF   Contatta l'autore
Lanzara_preprint_Approximation-of-solutions_2016.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 468.72 kB
Formato Adobe PDF
468.72 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/865688
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 8
social impact