We propose a fast method for high order approximations of the solution of $n$-dimensional parabolic problems over hyper-rectangular domains in the framework of the method of approximate approximations. This approach, combined with separated representations, makes our method effective also in very high dimensions. We report on numerical results illustrating that our formulas are accurate and provide the predicted approximation rate $6$ up to dimension $10^7$.
Approximation of solutions to multidimensional parabolic equations by approximate approximations / Lanzara, Flavia; Vladimir, Maz'Ya; Gunther, Schmidt. - In: APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS. - ISSN 1063-5203. - STAMPA. - 41:(2016), pp. 749-767. [http://dx.doi.org/10.1016/j.acha.2015.06.001]
Approximation of solutions to multidimensional parabolic equations by approximate approximations
LANZARA, Flavia;
2016
Abstract
We propose a fast method for high order approximations of the solution of $n$-dimensional parabolic problems over hyper-rectangular domains in the framework of the method of approximate approximations. This approach, combined with separated representations, makes our method effective also in very high dimensions. We report on numerical results illustrating that our formulas are accurate and provide the predicted approximation rate $6$ up to dimension $10^7$.File | Dimensione | Formato | |
---|---|---|---|
Lanzara_Approximation-of-solutions_2016.pdf
solo gestori archivio
Note: Articolo
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
458.52 kB
Formato
Adobe PDF
|
458.52 kB | Adobe PDF | Contatta l'autore |
Lanzara_preprint_Approximation-of-solutions_2016.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
468.72 kB
Formato
Adobe PDF
|
468.72 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.