In this paper we study the iterated birth process of which we examine the first-passage time distributions and the hitting probabilities. Furthermore, linear birth processes, linear and sublinear death processes at Poisson times are investigated. In particular, we study the hitting times in all cases and examine their long-range behavior. The time-changed population models considered here display upward (Birth process) and downward jumps (death processes) of arbitrary size and, for this reason, can be adopted as adequate models in ecology, epidemics and finance situations, under stress conditions.

Population Processes Sampled at Random Times / Beghin, Luisa; Orsingher, Enzo. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - STAMPA. - 163:1(2016), pp. 1-21. [10.1007/s10955-016-1475-2]

Population Processes Sampled at Random Times

BEGHIN, Luisa;ORSINGHER, Enzo
2016

Abstract

In this paper we study the iterated birth process of which we examine the first-passage time distributions and the hitting probabilities. Furthermore, linear birth processes, linear and sublinear death processes at Poisson times are investigated. In particular, we study the hitting times in all cases and examine their long-range behavior. The time-changed population models considered here display upward (Birth process) and downward jumps (death processes) of arbitrary size and, for this reason, can be adopted as adequate models in ecology, epidemics and finance situations, under stress conditions.
2016
Bell polynomials; extinction probabilities; first-passage times; hitting times; linear and sublinear death processes; stirling numbers; Yule-Furry process; statistical and nonlinear physics; mathematical physics
01 Pubblicazione su rivista::01a Articolo in rivista
Population Processes Sampled at Random Times / Beghin, Luisa; Orsingher, Enzo. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - STAMPA. - 163:1(2016), pp. 1-21. [10.1007/s10955-016-1475-2]
File allegati a questo prodotto
File Dimensione Formato  
Beghin_Population-Processes_2016.pdf

solo gestori archivio

Note: manuscript
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 663.52 kB
Formato Adobe PDF
663.52 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/865212
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact