In this work we propose the use of functional data analysis (FDA) to deal with a very large dataset of atmospheric aerosol size distribution resolved in both space and time. Data come from a mobile measurement platform in the town of Perugia (Central Italy). An OPC (Optical Particle Counter) is integrated on a cabin of the Minimetrò, an urban transportation system, that moves along a monorail on a line transect of the town. The OPC takes a sample of air every six seconds and counts the number of particles of urban aerosols with a diameter between 0.28 μm and 10 μm and classifies such particles into 21 size bins according to their diameter. Here, we adopt a 2D functional data representation for each of the 21 spatiotemporal series. In fact, space is unidimensional since it is measured as the distance on the monorail from the base station of the Minimetrò. FDA allows for a reduction of the dimensionality of each dataset and accounts for the high space-time resolution of the data. Functional cluster analysis is then performed to search for similarities among the 21 size channels in terms of their spatiotemporal pattern. Results provide a good classification of the 21 size bins into a relatively small number of groups (between three and four) according to the season of the year. Groups including coarser particles have more similar patterns, while those including finer particles show a more different behavior according to the period of the year. Such features are consistent with the physics of atmospheric aerosol and the highlighted patterns provide a very useful ground for prospective model-based studies.

Functional exploratory data analysis for high-resolution measurements of urban particulate matter / Ranalli, M. Giovanna; Rocco, Giorgia; JONA LASINIO, Giovanna; Moroni, Beatrice; Castellini, Silvia; Crocchianti, Stefano; Cappelletti, David. - In: BIOMETRICAL JOURNAL. - ISSN 0323-3847. - STAMPA. - (2016), pp. 1-19. [10.1002/bimj.201400251]

Functional exploratory data analysis for high-resolution measurements of urban particulate matter

ROCCO, GIORGIA;JONA LASINIO, Giovanna;
2016

Abstract

In this work we propose the use of functional data analysis (FDA) to deal with a very large dataset of atmospheric aerosol size distribution resolved in both space and time. Data come from a mobile measurement platform in the town of Perugia (Central Italy). An OPC (Optical Particle Counter) is integrated on a cabin of the Minimetrò, an urban transportation system, that moves along a monorail on a line transect of the town. The OPC takes a sample of air every six seconds and counts the number of particles of urban aerosols with a diameter between 0.28 μm and 10 μm and classifies such particles into 21 size bins according to their diameter. Here, we adopt a 2D functional data representation for each of the 21 spatiotemporal series. In fact, space is unidimensional since it is measured as the distance on the monorail from the base station of the Minimetrò. FDA allows for a reduction of the dimensionality of each dataset and accounts for the high space-time resolution of the data. Functional cluster analysis is then performed to search for similarities among the 21 size channels in terms of their spatiotemporal pattern. Results provide a good classification of the 21 size bins into a relatively small number of groups (between three and four) according to the season of the year. Groups including coarser particles have more similar patterns, while those including finer particles show a more different behavior according to the period of the year. Such features are consistent with the physics of atmospheric aerosol and the highlighted patterns provide a very useful ground for prospective model-based studies.
2016
air quality; classification; functional data analysis; high-frequency data; penalized splines; sensor data
01 Pubblicazione su rivista::01a Articolo in rivista
Functional exploratory data analysis for high-resolution measurements of urban particulate matter / Ranalli, M. Giovanna; Rocco, Giorgia; JONA LASINIO, Giovanna; Moroni, Beatrice; Castellini, Silvia; Crocchianti, Stefano; Cappelletti, David. - In: BIOMETRICAL JOURNAL. - ISSN 0323-3847. - STAMPA. - (2016), pp. 1-19. [10.1002/bimj.201400251]
File allegati a questo prodotto
File Dimensione Formato  
Ranalli_Functional-exploratory_2016.pdf

solo gestori archivio

Note: articolo principale
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/865001
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact