We consider a gapped periodic quantum system with time-reversal symmetry of fermionic (or odd) type, i.e. the time-reversal operator squares to −1. We investigate the existence of periodic and time-reversal invariant Bloch frames in dimensions 2 and 3. In 2d, the obstruction to the existence of such a frame is shown to be encoded in a Z2-valued topological invariant, which can be computed by a simple algorithm. We prove that the latter agrees with the Fu-Kane index. In 3d, instead, four Z2 invariants emerge from the construction, again related to the Fu-Kane-Mele indices. When no topological obstruction is present, we provide a constructive algorithm yielding explicitly a periodic and time-reversal invariant Bloch frame. The result is formulated in an abstract setting, so that it applies both to discrete models and to continuous ones.
Z_2 Invariants of topological insulators as geometric obstructions / Fiorenza, Domenico; Monaco, Domenico; Panati, Gianluca. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - STAMPA. - 343:3(2016), pp. 1115-1157. [10.1007/s00220-015-2552-0]
Z_2 Invariants of topological insulators as geometric obstructions
FIORENZA, DOMENICO;MONACO, DOMENICO;PANATI, GIANLUCA
2016
Abstract
We consider a gapped periodic quantum system with time-reversal symmetry of fermionic (or odd) type, i.e. the time-reversal operator squares to −1. We investigate the existence of periodic and time-reversal invariant Bloch frames in dimensions 2 and 3. In 2d, the obstruction to the existence of such a frame is shown to be encoded in a Z2-valued topological invariant, which can be computed by a simple algorithm. We prove that the latter agrees with the Fu-Kane index. In 3d, instead, four Z2 invariants emerge from the construction, again related to the Fu-Kane-Mele indices. When no topological obstruction is present, we provide a constructive algorithm yielding explicitly a periodic and time-reversal invariant Bloch frame. The result is formulated in an abstract setting, so that it applies both to discrete models and to continuous ones.File | Dimensione | Formato | |
---|---|---|---|
Fiorenza_Z2-Invariants-of-topological_2016.pdf
solo gestori archivio
Note: Articolo Online First
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
942.25 kB
Formato
Adobe PDF
|
942.25 kB | Adobe PDF | Contatta l'autore |
Fiorenza_preprint_Z2-Invariants-of-topological_2016.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
638.26 kB
Formato
Unknown
|
638.26 kB | Unknown |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.