We consider a gapped periodic quantum system with time-reversal symmetry of fermionic (or odd) type, i.e. the time-reversal operator squares to −1. We investigate the existence of periodic and time-reversal invariant Bloch frames in dimensions 2 and 3. In 2d, the obstruction to the existence of such a frame is shown to be encoded in a Z2-valued topological invariant, which can be computed by a simple algorithm. We prove that the latter agrees with the Fu-Kane index. In 3d, instead, four Z2 invariants emerge from the construction, again related to the Fu-Kane-Mele indices. When no topological obstruction is present, we provide a constructive algorithm yielding explicitly a periodic and time-reversal invariant Bloch frame. The result is formulated in an abstract setting, so that it applies both to discrete models and to continuous ones.

Z_2 Invariants of topological insulators as geometric obstructions / Fiorenza, Domenico; Monaco, Domenico; Panati, Gianluca. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - STAMPA. - 343:3(2016), pp. 1115-1157. [10.1007/s00220-015-2552-0]

Z_2 Invariants of topological insulators as geometric obstructions

FIORENZA, DOMENICO;MONACO, DOMENICO;PANATI, GIANLUCA
2016

Abstract

We consider a gapped periodic quantum system with time-reversal symmetry of fermionic (or odd) type, i.e. the time-reversal operator squares to −1. We investigate the existence of periodic and time-reversal invariant Bloch frames in dimensions 2 and 3. In 2d, the obstruction to the existence of such a frame is shown to be encoded in a Z2-valued topological invariant, which can be computed by a simple algorithm. We prove that the latter agrees with the Fu-Kane index. In 3d, instead, four Z2 invariants emerge from the construction, again related to the Fu-Kane-Mele indices. When no topological obstruction is present, we provide a constructive algorithm yielding explicitly a periodic and time-reversal invariant Bloch frame. The result is formulated in an abstract setting, so that it applies both to discrete models and to continuous ones.
2016
statistical and nonlinear physics; mathematical physics
01 Pubblicazione su rivista::01a Articolo in rivista
Z_2 Invariants of topological insulators as geometric obstructions / Fiorenza, Domenico; Monaco, Domenico; Panati, Gianluca. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - STAMPA. - 343:3(2016), pp. 1115-1157. [10.1007/s00220-015-2552-0]
File allegati a questo prodotto
File Dimensione Formato  
Fiorenza_Z2-Invariants-of-topological_2016.pdf

solo gestori archivio

Note: Articolo Online First
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 942.25 kB
Formato Adobe PDF
942.25 kB Adobe PDF   Contatta l'autore
Fiorenza_preprint_Z2-Invariants-of-topological_2016.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 638.26 kB
Formato Unknown
638.26 kB Unknown

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/862487
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 26
social impact