Weighted k-Nearest Neighbors (WkNN) algorithms based on WiFi fingerprinting are a popular choice for 3D indoor position estimation. Performance of these schemes strongly depends however on the number of k Reference Points (RPs) used for the estimation. In this work a novel WiFi fingerprinting WkNN algorithm is proposed, that aims at improving position accuracy and robustness to variations of the value of k. The proposed algorithm relies on frequentist theory of inference combined with a measure of similarity given by the Pearson's correlation R statistical index. The algorithm uses the p-value probabilities as defined in frequentist inference to determine the relevance of each RP. The algorithm is compared with preexisting WkNN algorithms as well as with a WkNN algorithm relying on the R index, also defined in this work. Experimental results show that the proposed algorithm leads to higher positioning accuracy and higher robustness to sub-optimal selection of the value k.

Frequentist Inference for WiFi Fingerprinting 3D Indoor Positioning / CASO, GIUSEPPE; DE NARDIS, LUCA; DI BENEDETTO, Maria Gabriella. - ELETTRONICO. - (2015), pp. 809-814. (Intervento presentato al convegno IEEE International Conference on Communications tenutosi a London; United Kingdom) [10.1109/ICCW.2015.7247278].

Frequentist Inference for WiFi Fingerprinting 3D Indoor Positioning

CASO, GIUSEPPE;DE NARDIS, LUCA;DI BENEDETTO, Maria Gabriella
2015

Abstract

Weighted k-Nearest Neighbors (WkNN) algorithms based on WiFi fingerprinting are a popular choice for 3D indoor position estimation. Performance of these schemes strongly depends however on the number of k Reference Points (RPs) used for the estimation. In this work a novel WiFi fingerprinting WkNN algorithm is proposed, that aims at improving position accuracy and robustness to variations of the value of k. The proposed algorithm relies on frequentist theory of inference combined with a measure of similarity given by the Pearson's correlation R statistical index. The algorithm uses the p-value probabilities as defined in frequentist inference to determine the relevance of each RP. The algorithm is compared with preexisting WkNN algorithms as well as with a WkNN algorithm relying on the R index, also defined in this work. Experimental results show that the proposed algorithm leads to higher positioning accuracy and higher robustness to sub-optimal selection of the value k.
2015
IEEE International Conference on Communications
indoor positioning; fingerprinting; Wi-Fi
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Frequentist Inference for WiFi Fingerprinting 3D Indoor Positioning / CASO, GIUSEPPE; DE NARDIS, LUCA; DI BENEDETTO, Maria Gabriella. - ELETTRONICO. - (2015), pp. 809-814. (Intervento presentato al convegno IEEE International Conference on Communications tenutosi a London; United Kingdom) [10.1109/ICCW.2015.7247278].
File allegati a questo prodotto
File Dimensione Formato  
Caso_Frequentist_2015.pdf

solo utenti autorizzati

Note: Versione IEEExplore
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 221.94 kB
Formato Adobe PDF
221.94 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/856562
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact