Boson sampling is a computational task strongly believed to be hard for classical computers, but efficiently solvable by orchestrated bosonic interference in a specialized quantum computer. Current experimental schemes, however, are still insufficient for a convincing demonstration of the advantage of quantum over classical computation. A new variation of this task, scattershot boson sampling, leads to an exponential increase in speed of the quantum device, using a larger number of photon sources based on parametric down-conversion. This is achieved by having multiple heralded single photons being sent, shot by shot, into different random input ports of the interferometer. We report the first scattershot boson sampling experiments, where six different photon-pair sources are coupled to integrated photonic circuits. We use recently proposed statistical tools to analyze our experimental data, providing strong evidence that our photonic quantum simulator works as expected. This approach represents an important leap toward a convincing experimental demonstration of the quantum computational supremacy.

Experimental scattershot boson sampling / Bentivegna, Marco; Spagnolo, Nicolo'; Vitelli, Chiara; Flamini, Fulvio; Viggianiello, Niko; Latmiral, Ludovico; Mataloni, Paolo; Brod, Daniel J; Galvão, Ernesto F; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto; Sciarrino, Fabio. - In: SCIENCE ADVANCES. - ISSN 2375-2548. - ELETTRONICO. - 1:3(2015). [10.1126/sciadv.1400255]

Experimental scattershot boson sampling

BENTIVEGNA, MARCO;SPAGNOLO, NICOLO';VITELLI, Chiara;FLAMINI, FULVIO;VIGGIANIELLO, NIKO;MATALONI, Paolo;SCIARRINO, Fabio
2015

Abstract

Boson sampling is a computational task strongly believed to be hard for classical computers, but efficiently solvable by orchestrated bosonic interference in a specialized quantum computer. Current experimental schemes, however, are still insufficient for a convincing demonstration of the advantage of quantum over classical computation. A new variation of this task, scattershot boson sampling, leads to an exponential increase in speed of the quantum device, using a larger number of photon sources based on parametric down-conversion. This is achieved by having multiple heralded single photons being sent, shot by shot, into different random input ports of the interferometer. We report the first scattershot boson sampling experiments, where six different photon-pair sources are coupled to integrated photonic circuits. We use recently proposed statistical tools to analyze our experimental data, providing strong evidence that our photonic quantum simulator works as expected. This approach represents an important leap toward a convincing experimental demonstration of the quantum computational supremacy.
2015
Boson Sampling; Bosonic coalescence; Integrated quantum photonics; Multiphoton quantum interference; Quantum information processing; Quantum optics; Quantum simulations; Quantum supremacy; Quantum walk
01 Pubblicazione su rivista::01a Articolo in rivista
Experimental scattershot boson sampling / Bentivegna, Marco; Spagnolo, Nicolo'; Vitelli, Chiara; Flamini, Fulvio; Viggianiello, Niko; Latmiral, Ludovico; Mataloni, Paolo; Brod, Daniel J; Galvão, Ernesto F; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto; Sciarrino, Fabio. - In: SCIENCE ADVANCES. - ISSN 2375-2548. - ELETTRONICO. - 1:3(2015). [10.1126/sciadv.1400255]
File allegati a questo prodotto
File Dimensione Formato  
Bentivegna_Scattershot_2015.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/855429
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 195
  • ???jsp.display-item.citation.isi??? 186
social impact