In the framework of experimental dynamic substructuring, substructure decoupling consists in the identification of the dynamic behaviour of a structural subsystem, starting from the dynamic behaviour of both the assembled system and the residual subsystem (the known portion of the assembled system). On the contrary, substructure coupling identifies an assembled system starting from the component subsystems. The degrees of freedom (DoFs) of the assembled system can be partitioned into internal DoFs (not belonging to the couplings) and coupling DoFs. In substructure coupling, whenever coupling DoFs include rotational DoFs, the related rotational FRFs must be obtained experimentally. Does this requirement holds for substructure decoupling too, as it is commonly believed? Decoupling can be ideally accomplished by adding the negative of the residual subsystem to the assembled system (direct decoupling) and by enforcing compatibility and equilibrium at enough interface DoFs. Ideally, every DoF of the residual subsystem belongs to the interface between the assembled system and the residual subsystem. Hopefully, not all the coupling DoFs are necessary to enforce compatibility and equilibrium. This may allow us to skip coupling DoFs and specifically rotational DoFs. The goal of the paper is indeed to establish if rotational FRFs at coupling DoFs can be neglected in substructure decoupling. To this aim, after highlighting the possibility of avoiding the use of coupling DoFs from a theoretical standpoint, a test bed coupled through flexural and torsional DoFs is considered. Experimental results are presented and discussed.
Substructure decoupling without using rotational DoFs: fact or fiction? / D'Ambrogio, Walter; Fregolent, Annalisa. - In: MECHANICAL SYSTEMS AND SIGNAL PROCESSING. - ISSN 0888-3270. - STAMPA. - 72-73:(2016), pp. 499-512. [10.1016/j.ymssp.2015.11.029]
Substructure decoupling without using rotational DoFs: fact or fiction?
FREGOLENT, Annalisa
2016
Abstract
In the framework of experimental dynamic substructuring, substructure decoupling consists in the identification of the dynamic behaviour of a structural subsystem, starting from the dynamic behaviour of both the assembled system and the residual subsystem (the known portion of the assembled system). On the contrary, substructure coupling identifies an assembled system starting from the component subsystems. The degrees of freedom (DoFs) of the assembled system can be partitioned into internal DoFs (not belonging to the couplings) and coupling DoFs. In substructure coupling, whenever coupling DoFs include rotational DoFs, the related rotational FRFs must be obtained experimentally. Does this requirement holds for substructure decoupling too, as it is commonly believed? Decoupling can be ideally accomplished by adding the negative of the residual subsystem to the assembled system (direct decoupling) and by enforcing compatibility and equilibrium at enough interface DoFs. Ideally, every DoF of the residual subsystem belongs to the interface between the assembled system and the residual subsystem. Hopefully, not all the coupling DoFs are necessary to enforce compatibility and equilibrium. This may allow us to skip coupling DoFs and specifically rotational DoFs. The goal of the paper is indeed to establish if rotational FRFs at coupling DoFs can be neglected in substructure decoupling. To this aim, after highlighting the possibility of avoiding the use of coupling DoFs from a theoretical standpoint, a test bed coupled through flexural and torsional DoFs is considered. Experimental results are presented and discussed.File | Dimensione | Formato | |
---|---|---|---|
D'Ambrogio_substructure-decoupling_2016.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
4.93 MB
Formato
Adobe PDF
|
4.93 MB | Adobe PDF | Contatta l'autore |
D'Ambrogio_Preprint_substructure_2016.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
11.29 MB
Formato
Adobe PDF
|
11.29 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.