In this work, we deal with a bivariate time series of wind speed and direction. Our observed data have peculiar features, such as informative missing values, non-reliable measures under a specific condition and interval-censored data, that we take into account in the model specification. We analyse the time series with a non-parametric Bayesian hidden Markov model, introducing a new emission distribution, suitable to model our data, based on the invariant wrapped Poisson, the Poisson and the hurdle density. The model is estimated on simulated datasets and on the real data example that motivated this work.

Hidden Markov model for discrete circular–linear wind data time series / Mastrantonio, Gianluca; Calise, Gianfranco. - In: JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION. - ISSN 0094-9655. - ELETTRONICO. - 13(2016), pp. 1-14. [10.1080/00949655.2016.1142544]

Hidden Markov model for discrete circular–linear wind data time series

MASTRANTONIO, GIANLUCA;CALISE, GIANFRANCO
2016

Abstract

In this work, we deal with a bivariate time series of wind speed and direction. Our observed data have peculiar features, such as informative missing values, non-reliable measures under a specific condition and interval-censored data, that we take into account in the model specification. We analyse the time series with a non-parametric Bayesian hidden Markov model, introducing a new emission distribution, suitable to model our data, based on the invariant wrapped Poisson, the Poisson and the hurdle density. The model is estimated on simulated datasets and on the real data example that motivated this work.
2016
invariant wrapped poisson; hurdle model; discrete circular variable; non-parametricBayesian; Dirichlet process
01 Pubblicazione su rivista::01a Articolo in rivista
Hidden Markov model for discrete circular–linear wind data time series / Mastrantonio, Gianluca; Calise, Gianfranco. - In: JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION. - ISSN 0094-9655. - ELETTRONICO. - 13(2016), pp. 1-14. [10.1080/00949655.2016.1142544]
File allegati a questo prodotto
File Dimensione Formato  
Mastrantonio_ Hidden-Markov-model_2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/852998
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact