We consider the motion of a particle along the geodesic lines of the Poincaré halfplane. The particle is specularly reflected when it hits randomly-distributed obstacles that are assumed to be motionless. This is the hyperbolic version of the well-known Lorentz Process studied in the Euclidean context. We analyse the limit in which the density of the obstacles increases to infinity and the size of each obstacle vanishes: under a suitable scaling, we prove that our process converges to a Markovian process, namely a random flight on the hyperbolic manifold.

Motion among random obstacles on a hyperbolic space / Orsingher, Enzo; Ricciuti, Costantino; Sisti, Francesco. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - STAMPA. - (2016).

Motion among random obstacles on a hyperbolic space

ORSINGHER, Enzo;RICCIUTI, COSTANTINO;SISTI, FRANCESCO
2016

Abstract

We consider the motion of a particle along the geodesic lines of the Poincaré halfplane. The particle is specularly reflected when it hits randomly-distributed obstacles that are assumed to be motionless. This is the hyperbolic version of the well-known Lorentz Process studied in the Euclidean context. We analyse the limit in which the density of the obstacles increases to infinity and the size of each obstacle vanishes: under a suitable scaling, we prove that our process converges to a Markovian process, namely a random flight on the hyperbolic manifold.
2016
Poisson random fields · Hyperbolic spaces · Lorentz model · Boltzmann–Grad limit · Kinetic equations · Random flights
01 Pubblicazione su rivista::01a Articolo in rivista
Motion among random obstacles on a hyperbolic space / Orsingher, Enzo; Ricciuti, Costantino; Sisti, Francesco. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - STAMPA. - (2016).
File allegati a questo prodotto
File Dimensione Formato  
Orsingher_Motion_2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 549.58 kB
Formato Adobe PDF
549.58 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/851425
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact