It is well known that exponential Riesz bases are stable. The celebrated theorem by Kadec shows that 1/4 is a stability bound for the exponential basis on L2 {-π,π). In this paper we prove that α/π (where α is the Lamb-Oseen constant) is a stability bound for the sine basis on L2(-π,π). The difference between the two values α/π-1/4, is ≈ 0.15, therefore the stability bound for the sinc basis on L2(-π,π) is greater than Kadec's stability bound (i.e. 1/4).

An Explicit Bound for Stability of Sinc Bases / Avantaggiati, Antonio; Loreti, Paola; Vellucci, Pierluigi. - STAMPA. - 1:(2015), pp. 473-480. ((Intervento presentato al convegno 12th International Conference on Informatics in Control, Automation and Robotics tenutosi a Colmar, Alsace, France nel 21-23 July, 2015 [10.5220/0005512704730480].

An Explicit Bound for Stability of Sinc Bases

AVANTAGGIATI, Antonio;LORETI, Paola;VELLUCCI, PIERLUIGI
2015

Abstract

It is well known that exponential Riesz bases are stable. The celebrated theorem by Kadec shows that 1/4 is a stability bound for the exponential basis on L2 {-π,π). In this paper we prove that α/π (where α is the Lamb-Oseen constant) is a stability bound for the sine basis on L2(-π,π). The difference between the two values α/π-1/4, is ≈ 0.15, therefore the stability bound for the sinc basis on L2(-π,π) is greater than Kadec's stability bound (i.e. 1/4).
12th International Conference on Informatics in Control, Automation and Robotics
Kadec’s 1/4-theorem, Riesz Basis, Exponential Bases, Sinc Bases, Sampling Theorem.
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
An Explicit Bound for Stability of Sinc Bases / Avantaggiati, Antonio; Loreti, Paola; Vellucci, Pierluigi. - STAMPA. - 1:(2015), pp. 473-480. ((Intervento presentato al convegno 12th International Conference on Informatics in Control, Automation and Robotics tenutosi a Colmar, Alsace, France nel 21-23 July, 2015 [10.5220/0005512704730480].
File allegati a questo prodotto
File Dimensione Formato  
55127.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 341.34 kB
Formato Adobe PDF
341.34 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/849055
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact