It is well known that exponential Riesz bases are stable. The celebrated theorem by Kadec shows that 1/4 is a stability bound for the exponential basis on L2 {-π,π). In this paper we prove that α/π (where α is the Lamb-Oseen constant) is a stability bound for the sine basis on L2(-π,π). The difference between the two values α/π-1/4, is ≈ 0.15, therefore the stability bound for the sinc basis on L2(-π,π) is greater than Kadec's stability bound (i.e. 1/4).
An Explicit Bound for Stability of Sinc Bases / Avantaggiati, Antonio; Loreti, Paola; Vellucci, Pierluigi. - STAMPA. - 1:(2015), pp. 473-480. (Intervento presentato al convegno 12th International Conference on Informatics in Control, Automation and Robotics tenutosi a Colmar, Alsace, France nel 21-23 July, 2015) [10.5220/0005512704730480].
An Explicit Bound for Stability of Sinc Bases
AVANTAGGIATI, Antonio;LORETI, Paola;VELLUCCI, PIERLUIGI
2015
Abstract
It is well known that exponential Riesz bases are stable. The celebrated theorem by Kadec shows that 1/4 is a stability bound for the exponential basis on L2 {-π,π). In this paper we prove that α/π (where α is the Lamb-Oseen constant) is a stability bound for the sine basis on L2(-π,π). The difference between the two values α/π-1/4, is ≈ 0.15, therefore the stability bound for the sinc basis on L2(-π,π) is greater than Kadec's stability bound (i.e. 1/4).File | Dimensione | Formato | |
---|---|---|---|
55127.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
341.34 kB
Formato
Adobe PDF
|
341.34 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.