We study the Kuramoto model for coupled oscillators. For the case of identical natural frequencies, we give a new proof of the complete frequency synchronization for all initial data; extending this result to the continuous version of the model, we manage to prove the complete phase synchronization for any non-atomic measure-valued initial datum. We also discuss the relation between the boundedness of the entropy and the convergence to an incoherent state, for the case of non identical natural frequencies.

On the complete phase synchronization for the kuramoto model in the mean-field limit / Benedetto, Dario; Caglioti, Emanuele; Montemagno, Umberto. - In: COMMUNICATIONS IN MATHEMATICAL SCIENCES. - ISSN 1539-6746. - STAMPA. - 13:7(2015), pp. 1775-1786. [10.4310/CMS.2015.v13.n7.a6]

On the complete phase synchronization for the kuramoto model in the mean-field limit

BENEDETTO, Dario;CAGLIOTI, Emanuele;MONTEMAGNO, UMBERTO
2015

Abstract

We study the Kuramoto model for coupled oscillators. For the case of identical natural frequencies, we give a new proof of the complete frequency synchronization for all initial data; extending this result to the continuous version of the model, we manage to prove the complete phase synchronization for any non-atomic measure-valued initial datum. We also discuss the relation between the boundedness of the entropy and the convergence to an incoherent state, for the case of non identical natural frequencies.
2015
complete synchronization; coupled oscillators; Kuramoto model; mathematics (all); applied mathematics
01 Pubblicazione su rivista::01a Articolo in rivista
On the complete phase synchronization for the kuramoto model in the mean-field limit / Benedetto, Dario; Caglioti, Emanuele; Montemagno, Umberto. - In: COMMUNICATIONS IN MATHEMATICAL SCIENCES. - ISSN 1539-6746. - STAMPA. - 13:7(2015), pp. 1775-1786. [10.4310/CMS.2015.v13.n7.a6]
File allegati a questo prodotto
File Dimensione Formato  
Benedetto_On-the-complete-phase_2015.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 165.56 kB
Formato Adobe PDF
165.56 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/848449
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 84
  • ???jsp.display-item.citation.isi??? 78
social impact