This work presents the results of carbonation experiments performed on Basic Oxygen Furnace (BOF) steel slag samples employing gas mixtures containing 40 and 10% CO2 vol. simulating the gaseous effluents of gasification and combustion processes respectively, as well as 100% CO2 for comparison purposes. Two routes were tested, the slurry-phase (L/S = 5 l/kg, T = 100°C and Ptot = 10 bar) and the thin-film (L/S = 0.3–0.4 l kg, T = 50°C and Ptot = 7–10 bar) routes. For each one, the CO2 uptake achieved as a function of the reaction time was analyzed and on this basis, the energy requirements associated with each carbonation route and gas mixture composition were estimated considering to store the CO2 emissions of a medium size natural gas fired power plant (20 MW). For the slurry-phase route, maximum CO2 uptakes ranged from around 8% at 10% CO2, to 21.1% (BOF-a) and 29.2% (BOF-b) at 40% CO2 and 32.5% (BOF-a) and 40.3% (BOF-b) at 100% CO2. For the thin-film route, maximum uptakes of 13% (BOF-c) and 19.5% (BOF-d) at 40% CO2, and 17.8% (BOF-c) and 20.2% (BOF-d) at 100% were attained. The energy requirements of the two analyzed process routes appeared to depend chiefly on the CO2 uptake of the slag. For both process route, the minimum overall energy requirements were found for the tests with 40% CO2 flows (i.e., 1400−1600 MJ/tCO2 for the slurry-phase and 2220 – 2550 MJ/tCO2 for the thin-film route).

Accelerated carbonation of steel slags using CO2 diluted sources: CO2 uptakes and energy requirements / Baciocchi, Renato; Costa, Giulia; Polettini, Alessandra; Pomi, Raffaella; Stramazzo, Alessio; Zingaretti, Daniela. - In: FRONTIERS IN ENERGY RESEARCH. - ISSN 2296-598X. - STAMPA. - (2016). [10.3389/fenrg.2015.00056]

Accelerated carbonation of steel slags using CO2 diluted sources: CO2 uptakes and energy requirements

POLETTINI, Alessandra;POMI, Raffaella;STRAMAZZO, ALESSIO;
2016

Abstract

This work presents the results of carbonation experiments performed on Basic Oxygen Furnace (BOF) steel slag samples employing gas mixtures containing 40 and 10% CO2 vol. simulating the gaseous effluents of gasification and combustion processes respectively, as well as 100% CO2 for comparison purposes. Two routes were tested, the slurry-phase (L/S = 5 l/kg, T = 100°C and Ptot = 10 bar) and the thin-film (L/S = 0.3–0.4 l kg, T = 50°C and Ptot = 7–10 bar) routes. For each one, the CO2 uptake achieved as a function of the reaction time was analyzed and on this basis, the energy requirements associated with each carbonation route and gas mixture composition were estimated considering to store the CO2 emissions of a medium size natural gas fired power plant (20 MW). For the slurry-phase route, maximum CO2 uptakes ranged from around 8% at 10% CO2, to 21.1% (BOF-a) and 29.2% (BOF-b) at 40% CO2 and 32.5% (BOF-a) and 40.3% (BOF-b) at 100% CO2. For the thin-film route, maximum uptakes of 13% (BOF-c) and 19.5% (BOF-d) at 40% CO2, and 17.8% (BOF-c) and 20.2% (BOF-d) at 100% were attained. The energy requirements of the two analyzed process routes appeared to depend chiefly on the CO2 uptake of the slag. For both process route, the minimum overall energy requirements were found for the tests with 40% CO2 flows (i.e., 1400−1600 MJ/tCO2 for the slurry-phase and 2220 – 2550 MJ/tCO2 for the thin-film route).
2016
CO2 capture and storage; mineral carbonation; steel slags; energy requirements; fluegas
01 Pubblicazione su rivista::01a Articolo in rivista
Accelerated carbonation of steel slags using CO2 diluted sources: CO2 uptakes and energy requirements / Baciocchi, Renato; Costa, Giulia; Polettini, Alessandra; Pomi, Raffaella; Stramazzo, Alessio; Zingaretti, Daniela. - In: FRONTIERS IN ENERGY RESEARCH. - ISSN 2296-598X. - STAMPA. - (2016). [10.3389/fenrg.2015.00056]
File allegati a questo prodotto
File Dimensione Formato  
Baciocchi_Accelerated-carbonation_2016.pdf

accesso aperto

Note: https://www.frontiersin.org/articles/10.3389/fenrg.2015.00056/full
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 830.99 kB
Formato Adobe PDF
830.99 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/847968
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 22
social impact