In this paper, we present a novel framework for supporting the management and optimization of application subject to software anomalies and deployed on large scale cloud architectures, composed of different geographically distributed cloud regions. The framework uses machine learning models for predicting failures caused by accumulation of anomalies. It introduces a novel workload balancing approach and a proactive system scale up/scale down technique. We developed a prototype of the framework and present some experiments for validating the applicability of the proposed approaches
Proactive Scalability and Management of Resources in Hybrid Clouds via Machine Learning / Avresky, Dimiter R.; DI SANZO, Pierangelo; Pellegrini, Alessandro; Ciciani, Bruno; Forte, Luca. - ELETTRONICO. - (2015), pp. 114-119. (Intervento presentato al convegno International Symposium on Network Computing and Applications tenutosi a Cambridge; United States) [10.1109/NCA.2015.36].
Proactive Scalability and Management of Resources in Hybrid Clouds via Machine Learning
DI SANZO, PIERANGELO;PELLEGRINI, ALESSANDRO;CICIANI, Bruno;
2015
Abstract
In this paper, we present a novel framework for supporting the management and optimization of application subject to software anomalies and deployed on large scale cloud architectures, composed of different geographically distributed cloud regions. The framework uses machine learning models for predicting failures caused by accumulation of anomalies. It introduces a novel workload balancing approach and a proactive system scale up/scale down technique. We developed a prototype of the framework and present some experiments for validating the applicability of the proposed approachesFile | Dimensione | Formato | |
---|---|---|---|
Avresky_Postprint_Proactive-Scalability_2015.pdf
accesso aperto
Note: https://ieeexplore.ieee.org/abstract/document/7371712
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.93 MB
Formato
Adobe PDF
|
1.93 MB | Adobe PDF | |
Avresky_Frontespizio-indice_Proactive-Scalability_2015.pdf
solo gestori archivio
Tipologia:
Altro materiale allegato
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
480.65 kB
Formato
Adobe PDF
|
480.65 kB | Adobe PDF | Contatta l'autore |
Avresky_Proactive-Scalability_2015.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
367.17 kB
Formato
Adobe PDF
|
367.17 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.