The main aim of this paper is to set up a many-parameter model of mass breakdown to be applied to a reusable Earth–Mars–Earth solar-photon sail shuttle, and analyze the system behavior in two sub-problems: (1) the zero-payload shuttle, and (2) given the sailcraft sail loading and the gross payload mass, find the sail area of the shuttle. The solution to the subproblem-1 is of technological and programmatic importance. The general analysis of subproblem-2 is presented as a function of the sail side length, system mass, sail loading and thickness. In addition to the behaviors of the main system masses, useful information for future work on the sailcraft trajectory optimization is obtained via (a) a detailed mass model for the descent/ascent Martian Excursion Module, and (b) the fifty–fifty solution to the sailcraft sail loading breakdown equation. Of considerable importance is the evaluation of the minimum altitude for the rendezvous between the ascent rocket vehicle and the solar-photon sail propulsion module, a task performed via the Mars Climate Database 2014–2015. The analysis shows that such altitude is 300 km; below it, the atmospheric drag prevails over the solar-radiation thrust. By this value, an example of excursion module of 1500 kg in total mass is built, and the sailcraft sail loading and the return payload are calculated. Finally, the concept of launch opportunity-wide for a shuttle driven by solar-photon sail is introduced. The previous fifty–fifty solution may be a good initial guess for the trajectory optimization of this type of shuttle.
Mass breakdown model of solar-photon sail shuttle: The case for Mars / Vulpetti, G.; Circi, Christian. - In: ACTA ASTRONAUTICA. - ISSN 0094-5765. - STAMPA. - 119:(2016), pp. 87-100. [10.1016/j.actaastro.2015.11.010]
Mass breakdown model of solar-photon sail shuttle: The case for Mars
CIRCI, Christian
2016
Abstract
The main aim of this paper is to set up a many-parameter model of mass breakdown to be applied to a reusable Earth–Mars–Earth solar-photon sail shuttle, and analyze the system behavior in two sub-problems: (1) the zero-payload shuttle, and (2) given the sailcraft sail loading and the gross payload mass, find the sail area of the shuttle. The solution to the subproblem-1 is of technological and programmatic importance. The general analysis of subproblem-2 is presented as a function of the sail side length, system mass, sail loading and thickness. In addition to the behaviors of the main system masses, useful information for future work on the sailcraft trajectory optimization is obtained via (a) a detailed mass model for the descent/ascent Martian Excursion Module, and (b) the fifty–fifty solution to the sailcraft sail loading breakdown equation. Of considerable importance is the evaluation of the minimum altitude for the rendezvous between the ascent rocket vehicle and the solar-photon sail propulsion module, a task performed via the Mars Climate Database 2014–2015. The analysis shows that such altitude is 300 km; below it, the atmospheric drag prevails over the solar-radiation thrust. By this value, an example of excursion module of 1500 kg in total mass is built, and the sailcraft sail loading and the return payload are calculated. Finally, the concept of launch opportunity-wide for a shuttle driven by solar-photon sail is introduced. The previous fifty–fifty solution may be a good initial guess for the trajectory optimization of this type of shuttle.File | Dimensione | Formato | |
---|---|---|---|
Vulpetti_Mass _2016.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.9 MB
Formato
Adobe PDF
|
1.9 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.