In a classic optimization problem, the complete input data is assumed to be known to the algorithm. This assumption may not be true anymore in optimization problems motivated by the Internet where part of the input data is private knowledge of independent selfish agents. The goal of algorithmic mechanism design is to provide (in polynomial time) a solution to the optimization problem and a set of incentives for the agents such that disclosing the input data is a dominant strategy for the agents. In the case of NP-hard problems, the solution computed should also be a good approximation of the optimum. In this paper we focus on mechanism design for multiobjective optimization problems. In this setting we are given a main objective function and a set of secondary objectives which are modeled via budget constraints. Multiobjective optimization is a natural setting for mechanism design as many economical choices ask for a compromise between different, partially conflicting goals. The main contribution of this paper is showing that two of the main tools for the design of approximation algorithms for multiobjective optimization problems, namely, approximate Pareto sets and Lagrangian relaxation, can lead to truthful approximation schemes. By exploiting the method of approximate Pareto sets, we devise truthful deterministic and randomized multicriteria fully polynomial-time approximation schemes (FPTASs) for multiobjective optimization problems whose exact version admits a pseudopolynomial-time algorithm, as, for instance, the multibudgeted versions of minimum spanning tree, shortest path, maximum (perfect) matching, and matroid intersection. Our construction also applies to multidimensional knapsack and multiunit combinatorial auctions. Our FPTASs compute a $(1+\varepsilon)$-approximate solution violating each budget constraint by a factor $(1+\varepsilon)$. When feasible solutions induce an independence system, i.e., when subsets of feasible solutions are feasible as well, we present a PTAS (not violating any constraint), which combines the approach above with a novel monotone way to guess the heaviest elements in the optimum solution. Finally, we present a universally truthful Las Vegas PTAS for minimum spanning tree with a single budget constraint, where one wants to compute a minimum cost spanning tree whose length is at most a given value $L$. This result is based on the Lagrangian relaxation method, in combination with our monotone guessing step and with a random perturbation step (ensuring low expected running time). This result can be derandomized in the case of integral lengths. All the mentioned results match the best known approximation ratios, which are, however, obtained by non truthful algorithms.

Utilitarian mechanism design for multiobjective optimization / Grandoni, Fabrizio; Krysta, Piotr; Leonardi, Stefano; Ventre, Carmine. - In: SIAM JOURNAL ON COMPUTING. - ISSN 0097-5397. - STAMPA. - 43:4(2014), pp. 1263-1290. [10.1137/130913602]

Utilitarian mechanism design for multiobjective optimization

LEONARDI, Stefano;
2014

Abstract

In a classic optimization problem, the complete input data is assumed to be known to the algorithm. This assumption may not be true anymore in optimization problems motivated by the Internet where part of the input data is private knowledge of independent selfish agents. The goal of algorithmic mechanism design is to provide (in polynomial time) a solution to the optimization problem and a set of incentives for the agents such that disclosing the input data is a dominant strategy for the agents. In the case of NP-hard problems, the solution computed should also be a good approximation of the optimum. In this paper we focus on mechanism design for multiobjective optimization problems. In this setting we are given a main objective function and a set of secondary objectives which are modeled via budget constraints. Multiobjective optimization is a natural setting for mechanism design as many economical choices ask for a compromise between different, partially conflicting goals. The main contribution of this paper is showing that two of the main tools for the design of approximation algorithms for multiobjective optimization problems, namely, approximate Pareto sets and Lagrangian relaxation, can lead to truthful approximation schemes. By exploiting the method of approximate Pareto sets, we devise truthful deterministic and randomized multicriteria fully polynomial-time approximation schemes (FPTASs) for multiobjective optimization problems whose exact version admits a pseudopolynomial-time algorithm, as, for instance, the multibudgeted versions of minimum spanning tree, shortest path, maximum (perfect) matching, and matroid intersection. Our construction also applies to multidimensional knapsack and multiunit combinatorial auctions. Our FPTASs compute a $(1+\varepsilon)$-approximate solution violating each budget constraint by a factor $(1+\varepsilon)$. When feasible solutions induce an independence system, i.e., when subsets of feasible solutions are feasible as well, we present a PTAS (not violating any constraint), which combines the approach above with a novel monotone way to guess the heaviest elements in the optimum solution. Finally, we present a universally truthful Las Vegas PTAS for minimum spanning tree with a single budget constraint, where one wants to compute a minimum cost spanning tree whose length is at most a given value $L$. This result is based on the Lagrangian relaxation method, in combination with our monotone guessing step and with a random perturbation step (ensuring low expected running time). This result can be derandomized in the case of integral lengths. All the mentioned results match the best known approximation ratios, which are, however, obtained by non truthful algorithms.
2014
Algorithmic mechanism design; Approximate Pareto sets; Approximation algorithms; Lagrangian relaxation; Monotone algorithms; Multiobjective optimization; Truthful mechanisms; Mathematics (all); Computer Science (all)
01 Pubblicazione su rivista::01a Articolo in rivista
Utilitarian mechanism design for multiobjective optimization / Grandoni, Fabrizio; Krysta, Piotr; Leonardi, Stefano; Ventre, Carmine. - In: SIAM JOURNAL ON COMPUTING. - ISSN 0097-5397. - STAMPA. - 43:4(2014), pp. 1263-1290. [10.1137/130913602]
File allegati a questo prodotto
File Dimensione Formato  
VE_2014_11573-844717.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 391.04 kB
Formato Adobe PDF
391.04 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/844717
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact