STATEMENT OF PROBLEM: Metal ions released into the oral cavity from dental prosthesis alloys may damage the cellular metabolism or proliferation and cause hypersensitivity or allergies. The oral cavity environment is particularly prone to corrosion due to saliva, microorganisms, and pH variations. PURPOSE: The purpose of this in vitro study was to evaluate the ion release of chromium, cobalt, and iron from the Co-Cr alloys used for traditionally cast and computer-aided design/computer-aided manufacturing dental devices after interaction with oral bacteria and different pH conditions. MATERIAL AND METHODS: All specimens were prepared from currently available alloys, polished, and immersed in 3 different pH media (artificial saliva [pH 2.3] and 6.5% and 0.9% saline solution [pH 7.1]). Specimens were also incubated in the presence of the bacterium Eikenella corrodens. Solutions were analyzed with an atomic absorption spectrometer after 15 and 30 days in the chemical corrosion test and 30 days in the biocorrosion test to detect ions released in different solutions. An ANOVA test was used to evaluate statistically significant differences among the percentages of metal corrosion ion release values. RESULTS: The greatest amount of element release was seen after 30 days: 4.964 ppm of casting alloy, 2.642 ppm of milling alloy, and 2.351 ppm of laser metal sintering. CONCLUSIONS: With the exception of casting alloy under acidic conditions, no significant differences were found, even after exposure to bacteria

Cobalt-chromium alloys in dentistry. an evaluation of metal ion release / Lucchetti, Mc; Fratto, Giovanni; Valeriani, F; De Vittori, E; Giampaoli, S; Papetti, P; Romano Spica, V; Manzon, Licia. - In: THE JOURNAL OF PROSTHETIC DENTISTRY. - ISSN 0022-3913. - STAMPA. - 114:4(2015), pp. 602-608. [10.1016/j.prosdent.2015.03.002]

Cobalt-chromium alloys in dentistry. an evaluation of metal ion release

FRATTO, Giovanni;MANZON, Licia
2015

Abstract

STATEMENT OF PROBLEM: Metal ions released into the oral cavity from dental prosthesis alloys may damage the cellular metabolism or proliferation and cause hypersensitivity or allergies. The oral cavity environment is particularly prone to corrosion due to saliva, microorganisms, and pH variations. PURPOSE: The purpose of this in vitro study was to evaluate the ion release of chromium, cobalt, and iron from the Co-Cr alloys used for traditionally cast and computer-aided design/computer-aided manufacturing dental devices after interaction with oral bacteria and different pH conditions. MATERIAL AND METHODS: All specimens were prepared from currently available alloys, polished, and immersed in 3 different pH media (artificial saliva [pH 2.3] and 6.5% and 0.9% saline solution [pH 7.1]). Specimens were also incubated in the presence of the bacterium Eikenella corrodens. Solutions were analyzed with an atomic absorption spectrometer after 15 and 30 days in the chemical corrosion test and 30 days in the biocorrosion test to detect ions released in different solutions. An ANOVA test was used to evaluate statistically significant differences among the percentages of metal corrosion ion release values. RESULTS: The greatest amount of element release was seen after 30 days: 4.964 ppm of casting alloy, 2.642 ppm of milling alloy, and 2.351 ppm of laser metal sintering. CONCLUSIONS: With the exception of casting alloy under acidic conditions, no significant differences were found, even after exposure to bacteria
2015
cr-cobalt alloys; ion release; corrosion
01 Pubblicazione su rivista::01a Articolo in rivista
Cobalt-chromium alloys in dentistry. an evaluation of metal ion release / Lucchetti, Mc; Fratto, Giovanni; Valeriani, F; De Vittori, E; Giampaoli, S; Papetti, P; Romano Spica, V; Manzon, Licia. - In: THE JOURNAL OF PROSTHETIC DENTISTRY. - ISSN 0022-3913. - STAMPA. - 114:4(2015), pp. 602-608. [10.1016/j.prosdent.2015.03.002]
File allegati a questo prodotto
File Dimensione Formato  
Lucchetti_Cobalt-chromium_2015.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 559.09 kB
Formato Adobe PDF
559.09 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/843846
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 54
social impact