We propose a novel approach to human action recognition, with motion capture data (MoCap), based on grouping sub-body parts. By representing configurations of actions as manifolds, joint positions are mapped on a subspace via principal geodesic analysis. The reduced space is still highly informative and allows for classification based on a non-parametric Bayesian approach, generating behaviors for each sub-body part. Having partitioned the set of joints, poses relative to a sub-body part are exchangeable, given a specified prior and can elicit, in principle, infinite behaviors. The generation of these behaviors is specified by a Dirichlet process mixture. We show with several experiments that the recognition gives very promising results, outperforming methods requiring temporal alignment.

Bayesian non-parametric inference for manifold based MoCap representation / Natola, Fabrizio; Ntouskos, Valsamis; Sanzari, Marta; PIRRI ARDIZZONE, Maria Fiora. - ELETTRONICO. - (2015), pp. 4606-4614. (Intervento presentato al convegno 15th IEEE International Conference on Computer Vision, ICCV 2015 tenutosi a Santiago; Chile nel 13-18 Dicembre 2015) [10.1109/ICCV.2015.523].

Bayesian non-parametric inference for manifold based MoCap representation

NATOLA, FABRIZIO
;
NTOUSKOS, VALSAMIS
;
SANZARI, MARTA
;
PIRRI ARDIZZONE, Maria Fiora
2015

Abstract

We propose a novel approach to human action recognition, with motion capture data (MoCap), based on grouping sub-body parts. By representing configurations of actions as manifolds, joint positions are mapped on a subspace via principal geodesic analysis. The reduced space is still highly informative and allows for classification based on a non-parametric Bayesian approach, generating behaviors for each sub-body part. Having partitioned the set of joints, poses relative to a sub-body part are exchangeable, given a specified prior and can elicit, in principle, infinite behaviors. The generation of these behaviors is specified by a Dirichlet process mixture. We show with several experiments that the recognition gives very promising results, outperforming methods requiring temporal alignment.
2015
15th IEEE International Conference on Computer Vision, ICCV 2015
action recognition; MOCAP; non-parametric Bayes estimation
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Bayesian non-parametric inference for manifold based MoCap representation / Natola, Fabrizio; Ntouskos, Valsamis; Sanzari, Marta; PIRRI ARDIZZONE, Maria Fiora. - ELETTRONICO. - (2015), pp. 4606-4614. (Intervento presentato al convegno 15th IEEE International Conference on Computer Vision, ICCV 2015 tenutosi a Santiago; Chile nel 13-18 Dicembre 2015) [10.1109/ICCV.2015.523].
File allegati a questo prodotto
File Dimensione Formato  
Natola_Postprint_Bayesian-non-parametric_2015.pdf

accesso aperto

Note: https://ieeexplore.ieee.org/document/7410880
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.79 MB
Formato Adobe PDF
2.79 MB Adobe PDF
Natola_Bayesian-non-parametric_2015.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 963.91 kB
Formato Adobe PDF
963.91 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/843203
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact