Plasmonic metallic nanoparticles (NPs) represent a relevant class of nanomaterials, which is able to achieve light localization down to nanoscale by exploiting a phenomenon called Localized Plasmon Resonance. In the last few years, NPs have been proposed to trigger DNA release or enhance ablation of diseased tissues, while minimizing damage to healthy tissues. In view of the therapeutic relevance of such plasmonic NPs; a detailed characterization of the electrostatic interaction between positively charged gold nanorods (GNRs) and a negatively charged whole-genome DNA solution is reported. The preparation of the hybrid biosystem has been investigated as a function of DNA concentration by means of zeta-potential; hydrodynamic diameter and gel electrophoresis analysis. The results have pointed out the specific conditions to achieve the most promising GNRs/DNA complex and its photo-thermal properties have been investigated. The overall study allows to envisage the possibility to ingeniously combine plasmonic and biological materials and, thus, enable design and development of an original non invasive all-optical methodology for monitoring photo-induced temperature variation with high sensitivity.

Plasmonic metallic nanoparticles (NPs) represent a relevant class of nanomaterials, which is able to achieve light localization down to nanoscale by exploiting a phenomenon called Localized Plasmon Resonance. In the last few years, NPs have been proposed to trigger DNA release or enhance ablation of diseased tissues, while minimizing damage to healthy tissues. In view of the therapeutic relevance of such plasmonic NPs; a detailed characterization of the electrostatic interaction between positively charged gold nanorods (GNRs) and a negatively charged whole-genome DNA solution is reported. The preparation of the hybrid biosystem has been investigated as a function of DNA concentration by means of ζ-potential; hydrodynamic diameter and gel electrophoresis analysis. The results have pointed out the specific conditions to achieve the most promising GNRs/DNA complex and its photo-thermal properties have been investigated. The overall study allows to envisage the possibility to ingeniously combine plasmonic and biological materials and, thus, enable design and development of an original non invasive all-optical methodology for monitoring photo-induced temperature variation with high sensitivity.

Plasmonics meets biology through optics / DE SIO, Luciano; Caracciolo, Giulio; Annesi, Ferdinanda; Placido, Tiziana; Pozzi, Daniela; Comparelli, Roberto; Pane, Alfredo; Curri, Maria Lucia; Agostiano, Angela; Bartolino, Roberto. - In: NANOMATERIALS. - ISSN 2079-4991. - ELETTRONICO. - 5:2(2015), pp. 1022-1033. [10.3390/nano5021022]

Plasmonics meets biology through optics

DE SIO, LUCIANO;CARACCIOLO, Giulio;POZZI, DANIELA;BARTOLINO, Roberto
2015

Abstract

Plasmonic metallic nanoparticles (NPs) represent a relevant class of nanomaterials, which is able to achieve light localization down to nanoscale by exploiting a phenomenon called Localized Plasmon Resonance. In the last few years, NPs have been proposed to trigger DNA release or enhance ablation of diseased tissues, while minimizing damage to healthy tissues. In view of the therapeutic relevance of such plasmonic NPs; a detailed characterization of the electrostatic interaction between positively charged gold nanorods (GNRs) and a negatively charged whole-genome DNA solution is reported. The preparation of the hybrid biosystem has been investigated as a function of DNA concentration by means of zeta-potential; hydrodynamic diameter and gel electrophoresis analysis. The results have pointed out the specific conditions to achieve the most promising GNRs/DNA complex and its photo-thermal properties have been investigated. The overall study allows to envisage the possibility to ingeniously combine plasmonic and biological materials and, thus, enable design and development of an original non invasive all-optical methodology for monitoring photo-induced temperature variation with high sensitivity.
2015
Plasmonic metallic nanoparticles (NPs) represent a relevant class of nanomaterials, which is able to achieve light localization down to nanoscale by exploiting a phenomenon called Localized Plasmon Resonance. In the last few years, NPs have been proposed to trigger DNA release or enhance ablation of diseased tissues, while minimizing damage to healthy tissues. In view of the therapeutic relevance of such plasmonic NPs; a detailed characterization of the electrostatic interaction between positively charged gold nanorods (GNRs) and a negatively charged whole-genome DNA solution is reported. The preparation of the hybrid biosystem has been investigated as a function of DNA concentration by means of ζ-potential; hydrodynamic diameter and gel electrophoresis analysis. The results have pointed out the specific conditions to achieve the most promising GNRs/DNA complex and its photo-thermal properties have been investigated. The overall study allows to envisage the possibility to ingeniously combine plasmonic and biological materials and, thus, enable design and development of an original non invasive all-optical methodology for monitoring photo-induced temperature variation with high sensitivity.
DNA; Nanomaterials; Optics; Plasmonics; Materials Science (all); Chemical Engineering (all)
01 Pubblicazione su rivista::01a Articolo in rivista
Plasmonics meets biology through optics / DE SIO, Luciano; Caracciolo, Giulio; Annesi, Ferdinanda; Placido, Tiziana; Pozzi, Daniela; Comparelli, Roberto; Pane, Alfredo; Curri, Maria Lucia; Agostiano, Angela; Bartolino, Roberto. - In: NANOMATERIALS. - ISSN 2079-4991. - ELETTRONICO. - 5:2(2015), pp. 1022-1033. [10.3390/nano5021022]
File allegati a questo prodotto
File Dimensione Formato  
DeSio_Plasmonics_2015.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/840133
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact