A severe groundwater contamination with extensive plumes of arsenic, phosphate and ammonium was found in a coastal aquifer beneath a former fertilizer production plant. The implementation of an active groundwater remediation strategy, based on a comprehensive pump and treat scheme, now prevents the migration of the dissolved contaminants into the marine environment. However, due to the site's proximity to the coastline, a seawater wedge was induced by the pumping scheme. Additionally the groundwater flow and salinity patterns were also strongly affected by leakage from the site's sewer system and from a seawater-fed cooling canal. The objective of this study was to elucidate the fate of arsenic and its co-contaminants over the site's history under the complex, coupled hydrodynamic and geochemical conditions that prevail at the site. A detailed geochemical characterisation of samples from sediment cores and hydrochemical data provided valuable high-resolution information. The obtained data were used to develop various conceptual models and to constrain the development and calibration of a reactive transport model. The reactive transport simulations were performed for a sub-domain (two-dimensional transect) of an earlier developed three-dimensional flow and variable density solute transport model. The results suggest that in the upper sub-oxic zone the influx of oxygenated water promoted As attenuation via co-precipitation with Al and Fe oxides and copper hydroxides. In contrast, in the deeper aquifer zone, iron reduction, associated with the release of adsorbed As and the dissolution of As bearing phases, provided and still provides to date a persistent source for groundwater pollution. The presented monitoring and modelling approach could be broadly applied to coastal polluted sites by complex contaminant mixture containing As.

Fate of arsenic, phosphate and ammonium plumes in a coastal aquifer affected by saltwater intrusion / Colombani, Nicolo'; Mastrocicco, M.; Prommer, H.; Sbarbati, Chiara; Petitta, Marco. - In: JOURNAL OF CONTAMINANT HYDROLOGY. - ISSN 0169-7722. - STAMPA. - 179:(2015), pp. 116-131. [10.1016/j.jconhyd.2015.06.003]

Fate of arsenic, phosphate and ammonium plumes in a coastal aquifer affected by saltwater intrusion

COLOMBANI, NICOLO';SBARBATI, CHIARA;PETITTA, Marco
2015

Abstract

A severe groundwater contamination with extensive plumes of arsenic, phosphate and ammonium was found in a coastal aquifer beneath a former fertilizer production plant. The implementation of an active groundwater remediation strategy, based on a comprehensive pump and treat scheme, now prevents the migration of the dissolved contaminants into the marine environment. However, due to the site's proximity to the coastline, a seawater wedge was induced by the pumping scheme. Additionally the groundwater flow and salinity patterns were also strongly affected by leakage from the site's sewer system and from a seawater-fed cooling canal. The objective of this study was to elucidate the fate of arsenic and its co-contaminants over the site's history under the complex, coupled hydrodynamic and geochemical conditions that prevail at the site. A detailed geochemical characterisation of samples from sediment cores and hydrochemical data provided valuable high-resolution information. The obtained data were used to develop various conceptual models and to constrain the development and calibration of a reactive transport model. The reactive transport simulations were performed for a sub-domain (two-dimensional transect) of an earlier developed three-dimensional flow and variable density solute transport model. The results suggest that in the upper sub-oxic zone the influx of oxygenated water promoted As attenuation via co-precipitation with Al and Fe oxides and copper hydroxides. In contrast, in the deeper aquifer zone, iron reduction, associated with the release of adsorbed As and the dissolution of As bearing phases, provided and still provides to date a persistent source for groundwater pollution. The presented monitoring and modelling approach could be broadly applied to coastal polluted sites by complex contaminant mixture containing As.
2015
Arsenic; coastal aquifer; groundwater pollution; reactive transport modelling; water science and technology; environmental chemistry
01 Pubblicazione su rivista::01a Articolo in rivista
Fate of arsenic, phosphate and ammonium plumes in a coastal aquifer affected by saltwater intrusion / Colombani, Nicolo'; Mastrocicco, M.; Prommer, H.; Sbarbati, Chiara; Petitta, Marco. - In: JOURNAL OF CONTAMINANT HYDROLOGY. - ISSN 0169-7722. - STAMPA. - 179:(2015), pp. 116-131. [10.1016/j.jconhyd.2015.06.003]
File allegati a questo prodotto
File Dimensione Formato  
Colombani_Fate_2015.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.23 MB
Formato Adobe PDF
2.23 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/838556
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact