HLA-E is a nonclassical HLA-class I molecule whose best known role is to protect from the natural killer cells. More recently, an additional function more similar to that of classical HLA-class I molecules, i.e., antigen presentation to T cells, is emerging. However, much remains to be explored about the intracellular trafficking of the HLA-E molecules. With the use of 3 different cellular contexts, 2 monocytic cell lines, U937 and THP1, and peripheral blood monocytes, we show here a remarkable increase of HLA-E during monocyte-macrophage differentiation. This goes independently from the classical HLA-class I, the main source of HLA-E-specific peptides, which is found strongly up-regulated upon differentiation of peripheral blood monocytes but not at all in the case of U937 and THP1 cell lines. Although in all cases, there was a moderate increase of HLA-E expressed in the cell surface, lysis by natural killer cells is comparably restored by an anti-NKG2A antibody in untreated as well as in PMA-differentiated U937 cells. Instead, the great majority of the HLA-E is retained in the vesicles of the autophagy-lysosome network, where they colocalize with the microtubule-associated protein light chain 3, as well as with the lysosomal-associated membrane protein 1. We conclude that differently from the classical HLA-class I molecules, the primary destination of the newly synthesized HLA-E molecules in macrophages is, rather than the cell membrane, the intracellular autophagy-lysosomal vesicles where they are stored and where they can encounter the exogenous antigens.

Regulation and trafficking of the HLA-E molecules during monocyte-macrophage differentiation / Camilli, Giorgio; Cassotta, Antonino; Battella, Simone; Palmieri, Gabriella; Santoni, Angela; Paladini, Fabiana; Fiorillo, Maria Teresa; Sorrentino, Rosa. - In: JOURNAL OF LEUKOCYTE BIOLOGY. - ISSN 0741-5400. - STAMPA. - 99:1(2016), pp. 121-130. [10.1189/jlb.1A0415-172R]

Regulation and trafficking of the HLA-E molecules during monocyte-macrophage differentiation

CAMILLI, GIORGIO;BATTELLA, SIMONE;PALMIERI, Gabriella;SANTONI, Angela;PALADINI, Fabiana;FIORILLO, Maria Teresa;SORRENTINO, Rosa
2016

Abstract

HLA-E is a nonclassical HLA-class I molecule whose best known role is to protect from the natural killer cells. More recently, an additional function more similar to that of classical HLA-class I molecules, i.e., antigen presentation to T cells, is emerging. However, much remains to be explored about the intracellular trafficking of the HLA-E molecules. With the use of 3 different cellular contexts, 2 monocytic cell lines, U937 and THP1, and peripheral blood monocytes, we show here a remarkable increase of HLA-E during monocyte-macrophage differentiation. This goes independently from the classical HLA-class I, the main source of HLA-E-specific peptides, which is found strongly up-regulated upon differentiation of peripheral blood monocytes but not at all in the case of U937 and THP1 cell lines. Although in all cases, there was a moderate increase of HLA-E expressed in the cell surface, lysis by natural killer cells is comparably restored by an anti-NKG2A antibody in untreated as well as in PMA-differentiated U937 cells. Instead, the great majority of the HLA-E is retained in the vesicles of the autophagy-lysosome network, where they colocalize with the microtubule-associated protein light chain 3, as well as with the lysosomal-associated membrane protein 1. We conclude that differently from the classical HLA-class I molecules, the primary destination of the newly synthesized HLA-E molecules in macrophages is, rather than the cell membrane, the intracellular autophagy-lysosomal vesicles where they are stored and where they can encounter the exogenous antigens.
File allegati a questo prodotto
File Dimensione Formato  
Camilli_Regulation-trafficking_2016.pdf

solo gestori archivio

Note: articolo principale
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/837690
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact