The Integrated Sachs-Wolfe (ISW) effect predicts additional anisotropies in the Cosmic MicrowaveBackground due to time variation of the gravitational potential when the expansion of the universeis not matter dominated. The ISW effect is therefore expected in the early universe, due to thepresence of relativistic particles at recombination, and in the late universe, when dark energy startsto dominate the expansion. Deviations from the standard picture can be parameterized byAeISWandAlISW, which rescale the overall amplitude of the early and late ISW effects. Analyzing themost recent CMB temperature spectra from the Planck 2015 release, we detect the presence of theearly ISW at high significance withAeISW= 1.06±0.04 at 68% CL and an upper limit for thelate ISW ofAlISW<1.1 at 95% CL. The inclusion of the recent polarization data from the Planckexperiment erases such 1.5σhint forAeISW6= 1. When considering the recent detections of the lateISW coming from correlations between CMB temperature anisotropies and weak lensing, a value ofAlISW= 0.85±0.21 is predicted at 68% CL, showing a 4σevidence. We discuss the stability of ourresult in the case of an extra relativistic energy component parametrized by the effective neutrinonumberNeffand of a CMB lensing amplitudeAL
Constraints on the early and late integrated Sachs-Wolfe effects from the Planck 2015 cosmic microwave background anisotropies in the angular power spectra / Cabass, Giovanni; Gerbino, Martina; Giusarma, Elena; Melchiorri, Alessandro; Pagano, Luca; Salvati, Laura. - In: PHYSICAL REVIEW D, PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY. - ISSN 1550-7998. - STAMPA. - 92:6(2015). [10.1103/PhysRevD.92.063534]
Constraints on the early and late integrated Sachs-Wolfe effects from the Planck 2015 cosmic microwave background anisotropies in the angular power spectra
CABASS, GIOVANNI;GERBINO, MARTINA;GIUSARMA, ELENA;MELCHIORRI, Alessandro;PAGANO, LUCA;SALVATI, LAURA
2015
Abstract
The Integrated Sachs-Wolfe (ISW) effect predicts additional anisotropies in the Cosmic MicrowaveBackground due to time variation of the gravitational potential when the expansion of the universeis not matter dominated. The ISW effect is therefore expected in the early universe, due to thepresence of relativistic particles at recombination, and in the late universe, when dark energy startsto dominate the expansion. Deviations from the standard picture can be parameterized byAeISWandAlISW, which rescale the overall amplitude of the early and late ISW effects. Analyzing themost recent CMB temperature spectra from the Planck 2015 release, we detect the presence of theearly ISW at high significance withAeISW= 1.06±0.04 at 68% CL and an upper limit for thelate ISW ofAlISW<1.1 at 95% CL. The inclusion of the recent polarization data from the Planckexperiment erases such 1.5σhint forAeISW6= 1. When considering the recent detections of the lateISW coming from correlations between CMB temperature anisotropies and weak lensing, a value ofAlISW= 0.85±0.21 is predicted at 68% CL, showing a 4σevidence. We discuss the stability of ourresult in the case of an extra relativistic energy component parametrized by the effective neutrinonumberNeffand of a CMB lensing amplitudeALFile | Dimensione | Formato | |
---|---|---|---|
Cabass_Constraints_2015.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.52 MB
Formato
Adobe PDF
|
1.52 MB | Adobe PDF | |
Cabass_Constraints on the early_2015.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
922.33 kB
Formato
Adobe PDF
|
922.33 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.