We consider a Schr\"odinger hamiltonian $H$ with scaling critical and time independent external electromagnetic potential, and assume that the angular operator $L$ associated to $H$ is positively definite. We prove the following: if $\|e^{-itH}\|_{L^1\to L^\infty}\leq Ct^{-n/2}$, then $ \||x|^{-g(n)}e^{-itH}|x|^{-g(n)}\|_{L^1\to L^\infty}\leq Ct^{-n/2-g(n)}$, being $g(n)$ a positive number, explicitly depending on the ground level of $L$ and the space dimension $n$.
Improved time-decay for a class of scaling critical electromagnetic Schrödinger flows / Fanelli, Luca; Grillo, Gabriele; Kovařík, Hynek. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - STAMPA. - 269:10(2015), pp. 3336-3346. [10.1016/j.jfa.2015.07.008]
Improved time-decay for a class of scaling critical electromagnetic Schrödinger flows
FANELLI, Luca;
2015
Abstract
We consider a Schr\"odinger hamiltonian $H$ with scaling critical and time independent external electromagnetic potential, and assume that the angular operator $L$ associated to $H$ is positively definite. We prove the following: if $\|e^{-itH}\|_{L^1\to L^\infty}\leq Ct^{-n/2}$, then $ \||x|^{-g(n)}e^{-itH}|x|^{-g(n)}\|_{L^1\to L^\infty}\leq Ct^{-n/2-g(n)}$, being $g(n)$ a positive number, explicitly depending on the ground level of $L$ and the space dimension $n$.File | Dimensione | Formato | |
---|---|---|---|
Fanelli_Improved-time-decay_2015.pdf
solo gestori archivio
Note: articolo Principale
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
329.74 kB
Formato
Adobe PDF
|
329.74 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.