This work presents the design, fabrication and characterization of a system based on thin film technology for the selective detection of the natural fluorescence of Ochratoxin A. To this aim, the system optically couples an amorphous silicon photosensor with a long pass multi-dielectric filter, deposited on glass substrates. In particular, the filter rejects the wavelengths coming from the excitation source (centered at 340 nm) and transmits the emission spectrum (centered at 465 nm) of the mycotoxin, reducing therefore the background noise. The basic structure of the a-Si:H photosensors is a p- type/intrinsic/n-type stacked junction, deposited by Plasma Enhanced Chemical Vapor Deposition at temperatures ranging from 210 to 300 °C. Its responsivity at 465 nm is equal to 185 mA/W. The long pass filter is an interferential filter, constituted by alternating layers of TiO2 and SiO2. It has been designed by using a freeware software, and deposited by electron beam Physical Vapor Deposition at 250 °C. A very good agreement between modeled and experimental data of transmittance and reflectance has been achieved. In particular, transmittance of the filter varies by almost four orders of magnitude between 360 nm and 400 nm, showing its suitability in rejecting the excitation light.

Multilayer integrated structure for selective detection of ochratoxin A / Caputo, Domenico; Parisi, E.; Carpentiero, Matteo; Nascetti, Augusto; DE CESARE, Giampiero; Tucci, M.; Pavanello, F.. - STAMPA. - (2015), pp. 1-5. (Intervento presentato al convegno 2015 International Conference on Biophotonics tenutosi a Florence, (Italy) nel 20-22 May 2015) [10.1109/BioPhotonics.2015.7304030].

Multilayer integrated structure for selective detection of ochratoxin A

CAPUTO, Domenico;NASCETTI, Augusto;DE CESARE, Giampiero;
2015

Abstract

This work presents the design, fabrication and characterization of a system based on thin film technology for the selective detection of the natural fluorescence of Ochratoxin A. To this aim, the system optically couples an amorphous silicon photosensor with a long pass multi-dielectric filter, deposited on glass substrates. In particular, the filter rejects the wavelengths coming from the excitation source (centered at 340 nm) and transmits the emission spectrum (centered at 465 nm) of the mycotoxin, reducing therefore the background noise. The basic structure of the a-Si:H photosensors is a p- type/intrinsic/n-type stacked junction, deposited by Plasma Enhanced Chemical Vapor Deposition at temperatures ranging from 210 to 300 °C. Its responsivity at 465 nm is equal to 185 mA/W. The long pass filter is an interferential filter, constituted by alternating layers of TiO2 and SiO2. It has been designed by using a freeware software, and deposited by electron beam Physical Vapor Deposition at 250 °C. A very good agreement between modeled and experimental data of transmittance and reflectance has been achieved. In particular, transmittance of the filter varies by almost four orders of magnitude between 360 nm and 400 nm, showing its suitability in rejecting the excitation light.
2015
2015 International Conference on Biophotonics
amorphous silicon photosensors; interferential filters; ochratoxin A
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Multilayer integrated structure for selective detection of ochratoxin A / Caputo, Domenico; Parisi, E.; Carpentiero, Matteo; Nascetti, Augusto; DE CESARE, Giampiero; Tucci, M.; Pavanello, F.. - STAMPA. - (2015), pp. 1-5. (Intervento presentato al convegno 2015 International Conference on Biophotonics tenutosi a Florence, (Italy) nel 20-22 May 2015) [10.1109/BioPhotonics.2015.7304030].
File allegati a questo prodotto
File Dimensione Formato  
Caputo_Multilayer_2015.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 648.66 kB
Formato Adobe PDF
648.66 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/828851
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact