We show how to determine if a given vector can be the signature of a system on a finite number of components and, if so, exhibit such a system in terms of its structure function. The method employs combinatorial results from the theory of (finite) simplicial complexes, and provides a full characterization of signature vectors using a theorem of Kruskal (1963) and Katona (1968). We also show how the same approach can provide new combinatorial proofs of further results, e.g. that the signature vector of a system cannot have isolated zeroes. Finally, we prove that a signature with all nonzero entries must be a uniform distribution.
The Kruskal-Katona theorem and a characterization of system signatures / D'Andrea, Alessandro; De Sanctis, Luca. - In: JOURNAL OF APPLIED PROBABILITY. - ISSN 0021-9002. - STAMPA. - 52:2(2015), pp. 508-518. [doi:10.1239/jap/1437658612]
The Kruskal-Katona theorem and a characterization of system signatures
D'ANDREA, Alessandro;DE SANCTIS, LUCA
2015
Abstract
We show how to determine if a given vector can be the signature of a system on a finite number of components and, if so, exhibit such a system in terms of its structure function. The method employs combinatorial results from the theory of (finite) simplicial complexes, and provides a full characterization of signature vectors using a theorem of Kruskal (1963) and Katona (1968). We also show how the same approach can provide new combinatorial proofs of further results, e.g. that the signature vector of a system cannot have isolated zeroes. Finally, we prove that a signature with all nonzero entries must be a uniform distribution.| File | Dimensione | Formato | |
|---|---|---|---|
|
DAndrea_Kruskal-Katona_2015.pdf
solo gestori archivio
Note: Articolo principale
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
201.18 kB
Formato
Adobe PDF
|
201.18 kB | Adobe PDF | Contatta l'autore |
|
DAndrea_preprint_Kruskal-Katona_2015.pdf
accesso aperto
Note: Il file può essere liberamente scaricato dalla homepage dell'autore all'indirizzo https://www1.mat.uniroma1.it/people/dandrea/ricerca/pdf_files/18.Signature.pdf
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
205.08 kB
Formato
Adobe PDF
|
205.08 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


