Vgamma9Vdelta2 T cells display a broad antimicrobial activity by directly killing infected cells and by inducing an effective adaptive immune response. The activation of Vgamma9Vdelta2 T cells by aminobisphosphonate drugs such as zoledronic acid (ZOL) results in a massive release of cytokines and chemokines that may induce a bystander activation of other immune cells. The aim of this work was to evaluate the ability of soluble factors released by ZOL-activated Vgamma9Vdelta2 T cells to induce granulocyte activation. We showed that soluble factors released by ZOL-stimulated Vgamma9Vdelta2 T cells activate granulocytes by inducing their chemotaxis, phagocytosis, and alpha-defensins release. Proteomic analysis allowed us to identify a number of cytokines and chemokines specifically released by activated Vgamma9Vdelta2 T cells. Moreover, MCP-2 depletion by neutralizing Ab revealed a critical role of this chemokine in induction of granulocyte alpha-defensins release. Altogether, these data show a Vgamma9Vdelta2-mediated activation of granulocytes through a bystander mechanism, and confirm the wide ability of Vgamma9Vdelta2 T-lymphocytes in orchestrating the immune response. In conclusion, an immune modulating strategy targeting Vgamma9Vdelta2 T cells may represent a key switch to induce an effective and well-coordinated immune response, and can be proposed as a way to strengthen the immune competence during infectious diseases.
"Activated Vg9Vd2 T cells trigger granulocytes functions via MCP-2 release" / Agrati, Ch; Cimini, E; Sacchi, A; Bordoni, V; Cristiana, G; Casetti, R; Turchi, F; Tripodi, Marco; Martini, F.. - In: JOURNAL OF IMMUNOLOGY. - ISSN 0022-1767. - STAMPA. - 182:(2009), pp. 522-529.
"Activated Vg9Vd2 T cells trigger granulocytes functions via MCP-2 release"
TRIPODI, Marco;
2009
Abstract
Vgamma9Vdelta2 T cells display a broad antimicrobial activity by directly killing infected cells and by inducing an effective adaptive immune response. The activation of Vgamma9Vdelta2 T cells by aminobisphosphonate drugs such as zoledronic acid (ZOL) results in a massive release of cytokines and chemokines that may induce a bystander activation of other immune cells. The aim of this work was to evaluate the ability of soluble factors released by ZOL-activated Vgamma9Vdelta2 T cells to induce granulocyte activation. We showed that soluble factors released by ZOL-stimulated Vgamma9Vdelta2 T cells activate granulocytes by inducing their chemotaxis, phagocytosis, and alpha-defensins release. Proteomic analysis allowed us to identify a number of cytokines and chemokines specifically released by activated Vgamma9Vdelta2 T cells. Moreover, MCP-2 depletion by neutralizing Ab revealed a critical role of this chemokine in induction of granulocyte alpha-defensins release. Altogether, these data show a Vgamma9Vdelta2-mediated activation of granulocytes through a bystander mechanism, and confirm the wide ability of Vgamma9Vdelta2 T-lymphocytes in orchestrating the immune response. In conclusion, an immune modulating strategy targeting Vgamma9Vdelta2 T cells may represent a key switch to induce an effective and well-coordinated immune response, and can be proposed as a way to strengthen the immune competence during infectious diseases.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.