This paper presents a new concept flexure hinge for MEMS applications and reveals how to design, construct, and experimentally test. This hinge combines a curved beam, as a flexible element, and a pair of conjugate surfaces, whose contact depends on load conditions. The geometry is conceived in such a way that minimum stress conditions are maintained within the flexible beam. A comparison of the new design with the other kind of revolute and flexible joints is presented. Then, the static behavior of the hinge is analyzed by means of a theoretical approach, based on continuum mechanics, and the results are compared to those obtained by means of finite element analysis (FEA) simulation. A silicon hinge prototype is also presented and the construction process, based on single step lithography and reactive ion etching (RIE) technology, is discussed. Finally, a crucial in–SEM experiment is performed and the experimental results are interpreted through the theoretical models.
MEMS-based conjugate surfaces flexure hinge / Verotti, Matteo; Crescenzi, Rocco; Balucani, Marco; Belfiore, Nicola Pio. - In: JOURNAL OF MECHANICAL DESIGN. - ISSN 1050-0472. - STAMPA. - 137:1(2015), pp. 1-10. [10.1115/1.4028791]
MEMS-based conjugate surfaces flexure hinge
VEROTTI, Matteo;CRESCENZI, Rocco;BALUCANI, Marco;BELFIORE, Nicola Pio
2015
Abstract
This paper presents a new concept flexure hinge for MEMS applications and reveals how to design, construct, and experimentally test. This hinge combines a curved beam, as a flexible element, and a pair of conjugate surfaces, whose contact depends on load conditions. The geometry is conceived in such a way that minimum stress conditions are maintained within the flexible beam. A comparison of the new design with the other kind of revolute and flexible joints is presented. Then, the static behavior of the hinge is analyzed by means of a theoretical approach, based on continuum mechanics, and the results are compared to those obtained by means of finite element analysis (FEA) simulation. A silicon hinge prototype is also presented and the construction process, based on single step lithography and reactive ion etching (RIE) technology, is discussed. Finally, a crucial in–SEM experiment is performed and the experimental results are interpreted through the theoretical models.File | Dimensione | Formato | |
---|---|---|---|
Verotti_MEMS-Based_2015.pdf
solo utenti autorizzati
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.05 MB
Formato
Adobe PDF
|
2.05 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.